If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(8x-3)(3x+2)-(4x+7)(x+4)=(2x+1)(5x-1)-33
We move all terms to the left:
(8x-3)(3x+2)-(4x+7)(x+4)-((2x+1)(5x-1)-33)=0
We multiply parentheses ..
(+24x^2+16x-9x-6)-(4x+7)(x+4)-((2x+1)(5x-1)-33)=0
We calculate terms in parentheses: -((2x+1)(5x-1)-33), so:We get rid of parentheses
(2x+1)(5x-1)-33
We multiply parentheses ..
(+10x^2-2x+5x-1)-33
We get rid of parentheses
10x^2-2x+5x-1-33
We add all the numbers together, and all the variables
10x^2+3x-34
Back to the equation:
-(10x^2+3x-34)
24x^2-10x^2+16x-9x-(4x+7)(x+4)-3x-6+34=0
We multiply parentheses ..
24x^2-10x^2-(+4x^2+16x+7x+28)+16x-9x-3x-6+34=0
We add all the numbers together, and all the variables
14x^2-(+4x^2+16x+7x+28)+4x+28=0
We get rid of parentheses
14x^2-4x^2-16x-7x+4x-28+28=0
We add all the numbers together, and all the variables
10x^2-19x=0
a = 10; b = -19; c = 0;
Δ = b2-4ac
Δ = -192-4·10·0
Δ = 361
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{361}=19$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-19)-19}{2*10}=\frac{0}{20} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-19)+19}{2*10}=\frac{38}{20} =1+9/10 $
| -5(3x+4)+3x+3=55 | | 18x^2+27x=12 | | 2/3p+9=15 | | 10k^2-15k=0 | | 0.75x-1.5=0.3 | | 5+|m|=1 | | (10x+8)=(5x-4) | | -5(x-5)+4x+4=25 | | x=0.6x=384 | | 1.01^x=50 | | 0•18(5-4)=0•5x+0•8 | | k+8/3=(-2) | | X-7y-11=0 | | 6.75+3/8x=13(0.25) | | 6.75+3/8x=13(1/4) | | 1/4x=3*2/3 | | 1/4x=32/3 | | 6n-9n+10n=252 | | 2.5x+9=3x | | -497a+50=-160 | | 1.8(18)+32=f | | 0.25(16n-6)=0.5(2n+3) | | 1/4=x/64 | | 3x+4/1=-27x/5 | | 10a-2=18 | | 2x+x=180-3x | | 3x+4x+5;x=9 | | (2x^2)/(x^2+2)^-2=0 | | 35=4m+7 | | -4(x+5)=5 | | y/5=13/17 | | Y3=x2 |