(8x-4)(12x-20)=36x+8

Simple and best practice solution for (8x-4)(12x-20)=36x+8 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (8x-4)(12x-20)=36x+8 equation:



(8x-4)(12x-20)=36x+8
We move all terms to the left:
(8x-4)(12x-20)-(36x+8)=0
We get rid of parentheses
(8x-4)(12x-20)-36x-8=0
We multiply parentheses ..
(+96x^2-160x-48x+80)-36x-8=0
We get rid of parentheses
96x^2-160x-48x-36x+80-8=0
We add all the numbers together, and all the variables
96x^2-244x+72=0
a = 96; b = -244; c = +72;
Δ = b2-4ac
Δ = -2442-4·96·72
Δ = 31888
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{31888}=\sqrt{16*1993}=\sqrt{16}*\sqrt{1993}=4\sqrt{1993}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-244)-4\sqrt{1993}}{2*96}=\frac{244-4\sqrt{1993}}{192} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-244)+4\sqrt{1993}}{2*96}=\frac{244+4\sqrt{1993}}{192} $

See similar equations:

| 80=7v+3 | | 7x-18=11x-9 | | 2d+4=10+4d | | 3b–9=12 | | 0.1t−30.1t​t=5 | | 3b–9=12;b=-10 | | 14c+4c-14c-2c=16 | | 0.1t−3​​​0.1t​​​t​​​​​=5 | | u/6-18=25 | | 14c+4c-14c-2c=166 | | 7x8+3=9x10 | | -74+14x=6x+94 | | x+3x=700 | | x^-10x^2+21x=0 | | 2k+2k+6k=20 | | 7+2a=-13 | | 9(b-89)=63 | | -22=2(f+7) | | 19m-17m=12 | | x^2=-2x=8 | | 8(b+3)=48 | | -9(d-98)=27 | | a/2=-18 | | 73=3w+28 | | -6u+14=26 | | 11q-8q=15 | | 3z/8+1=0 | | 4u+16=-9(u-9) | | 1/3x=210 | | 3z+11=89 | | 2/3z=19.5 | | 5x-3(x+2)=x+13 |

Equations solver categories