(9*(x*x)+63*x)/2=441

Simple and best practice solution for (9*(x*x)+63*x)/2=441 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (9*(x*x)+63*x)/2=441 equation:



(9*(x*x)+63*x)/2=441
We move all terms to the left:
(9*(x*x)+63*x)/2-(441)=0
We add all the numbers together, and all the variables
(9*(+x*x)+63*x)/2-441=0
We multiply all the terms by the denominator
(9*(+x*x)+63*x)-441*2=0
We calculate terms in parentheses: +(9*(+x*x)+63*x), so:
9*(+x*x)+63*x
We add all the numbers together, and all the variables
63x+9*(+x*x)
We multiply parentheses
9x^2+63x
Back to the equation:
+(9x^2+63x)
We add all the numbers together, and all the variables
(9x^2+63x)-882=0
We get rid of parentheses
9x^2+63x-882=0
a = 9; b = 63; c = -882;
Δ = b2-4ac
Δ = 632-4·9·(-882)
Δ = 35721
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{35721}=189$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(63)-189}{2*9}=\frac{-252}{18} =-14 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(63)+189}{2*9}=\frac{126}{18} =7 $

See similar equations:

| 5(x+7)^2-15=25 | | 2(2x+5)+3x+9=180 | | 15y-14=5y+7 | | 12t+16=64 | | 2x+11+2(3x+11)=180 | | 2(2x-1)+(3x+3)=180 | | 2(2x-1)+3x+3=180 | | |q-8|=15 | | 3x+x+(x-6)=119 | | 6y+(2y+5)=180 | | 4x+-7=5x-1 | | –2-7=x-37 | | 17x2=15x | | q/12+9=9 | | 5x10=6 | | 3x–1=4 | | -2(-6-8=-3)-6x+5 | | 5–1=2x+8 | | ก.5–1=2x+8 | | .5x-8.1=6.4 | | −12=−4 | | −12=−4 | | 283=0.38x-(690+0.91x)+5 | | |3x-5|-|7x-2|=0 | | |3x-5|=|7x-2|=0 | | 3×x+15=42 | | (13x+18)-42=(5x+1)-69 | | |3x-5|=|7x-2| | | 5t+17=48 | | 1/4x2+1/3x+1/9=0 | | 35-6x=4x | | 500=0.72x-(930+0.55x) |

Equations solver categories