If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(9+z)(3z+5)=0
We add all the numbers together, and all the variables
(z+9)(3z+5)=0
We multiply parentheses ..
(+3z^2+5z+27z+45)=0
We get rid of parentheses
3z^2+5z+27z+45=0
We add all the numbers together, and all the variables
3z^2+32z+45=0
a = 3; b = 32; c = +45;
Δ = b2-4ac
Δ = 322-4·3·45
Δ = 484
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{484}=22$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(32)-22}{2*3}=\frac{-54}{6} =-9 $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(32)+22}{2*3}=\frac{-10}{6} =-1+2/3 $
| 3x^2+4=5x^-4 | | -4.9x^2+76x+87=0 | | 12x-1+53+9x-15=180 | | -4.9t^2+76t+87=0 | | -43=x/4 | | 14=5x^2-33x | | 3/5x+1/2=7/6 | | 10-x-4x+8=-17 | | 20-10d+3+7d=0 | | 53+12x-1=9x-15 | | 12-8n-14=8n+18-6n | | 7a+4a/5=7a | | 12m-5=3m-32 | | 2/3x^2+1=7 | | 5x-10=-6x+1 | | -9/x=81 | | 72=7u+u | | 36x^2+26x-196=0 | | 2x+3(4x-1)=2(2x+3)+4x | | 7x-63=3-6 | | 4=1/2(5)+b | | 0.4x+2x=33/2+4.5 | | 15=4v-v | | 3x+4+5x=-20 | | 3+5*x=30+2x | | x2−6x+28=0x^2-6x+28=0 | | 8x^2-32x-140=0 | | (4√12)(3√20)=x | | 12/42=x/15x= | | 7x-70=86+x | | -8+m=-15 | | x^2−6x+28=0 |