(9-3x)*(5+2x)+(x-3)*(5+x)=0

Simple and best practice solution for (9-3x)*(5+2x)+(x-3)*(5+x)=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (9-3x)*(5+2x)+(x-3)*(5+x)=0 equation:



(9-3x)(5+2x)+(x-3)(5+x)=0
We add all the numbers together, and all the variables
(-3x+9)(2x+5)+(x-3)(x+5)=0
We multiply parentheses ..
(-6x^2-15x+18x+45)+(x-3)(x+5)=0
We get rid of parentheses
-6x^2-15x+18x+(x-3)(x+5)+45=0
We multiply parentheses ..
-6x^2+(+x^2+5x-3x-15)-15x+18x+45=0
We add all the numbers together, and all the variables
-6x^2+(+x^2+5x-3x-15)+3x+45=0
We get rid of parentheses
-6x^2+x^2+5x-3x+3x-15+45=0
We add all the numbers together, and all the variables
-5x^2+5x+30=0
a = -5; b = 5; c = +30;
Δ = b2-4ac
Δ = 52-4·(-5)·30
Δ = 625
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{625}=25$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-25}{2*-5}=\frac{-30}{-10} =+3 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+25}{2*-5}=\frac{20}{-10} =-2 $

See similar equations:

| x6+3x3+4=0 | | +23+x=-23 | | 44-4z=4(z-5) | | 8v+2v=4v+10 | | 14a2+2a-20=0 | | 57.5=52.5+0.21(x-15) | | 30.4+4y=8y+20 | | 72+x=-13 | | 5n^2+n-500=0 | | 3w+0=9w+24 | | 4u+15=7u-9 | | 34-5c=9 | | 22=20(1+0.004*(x-15) | | 6=3(h-3) | | 13=29-2f | | 39-4b=23 | | 37x2-172x-162=0 | | 2(2g-6)=18 | | 57.5=52.5(1+0.004*x-15) | | 5(d+4)=30 | | Z^4=2+3.464101615137755i | | -x^2+x+2=2 | | 11.8=5y=7y+6 | | 11.8=5y=7y | | 4w+-2=6w+8 | | x+1/x=x+5/x-1 | | 300=5t*2 | | 5(4x+5=15 | | 200=x^2+2x+32 | | x/2-2/x+1=0 | | 7*(4x-3)-(2x+1)9=2*(x-9) | | 3x+4=5x–8 |

Equations solver categories