(9-y)-1/2y=-3

Simple and best practice solution for (9-y)-1/2y=-3 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (9-y)-1/2y=-3 equation:



(9-y)-1/2y=-3
We move all terms to the left:
(9-y)-1/2y-(-3)=0
Domain of the equation: 2y!=0
y!=0/2
y!=0
y∈R
We add all the numbers together, and all the variables
(-1y+9)-1/2y-(-3)=0
We add all the numbers together, and all the variables
(-1y+9)-1/2y+3=0
We get rid of parentheses
-1y-1/2y+9+3=0
We multiply all the terms by the denominator
-1y*2y+9*2y+3*2y-1=0
Wy multiply elements
-2y^2+18y+6y-1=0
We add all the numbers together, and all the variables
-2y^2+24y-1=0
a = -2; b = 24; c = -1;
Δ = b2-4ac
Δ = 242-4·(-2)·(-1)
Δ = 568
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{568}=\sqrt{4*142}=\sqrt{4}*\sqrt{142}=2\sqrt{142}$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(24)-2\sqrt{142}}{2*-2}=\frac{-24-2\sqrt{142}}{-4} $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(24)+2\sqrt{142}}{2*-2}=\frac{-24+2\sqrt{142}}{-4} $

See similar equations:

| 4d=6d-6 | | 10x+0.15(50–x)=0.12(50) | | 5x+7x-60=80-8x | | 10+7b=7b+10 | | 2=2x+10=4=4x+80 | | -3z=12z-4z | | (3+n)•5=25 | | m/99+17=21 | | 10x=6+24 | | 2(11+p)=48 | | 3x-7/2=5/3 | | 6x-13=8-(3+2x) | | 1.5m=-12 | | 3(-2u+8)-2(u+3)=u-27 | | 161=254-v | | v1/4=-7/8 | | 9+x=97 | | 7x-6x+2=10 | | 188=-y+104 | | 215=91-u | | 6x-8=80 | | w+32=9w | | -4x+38=18 | | 4x-(-4x)+7=71 | | 4(n+2)=22 | | h/5/8=4 | | 4x-(4x)+7=71 | | 4x-(-4x)+7=21 | | 7-3u=4u | | .05n+0.10(n+8)=2.15 | | 24x+10=180 | | 20-5x=55 |

Equations solver categories