(9/10)*x=5400

Simple and best practice solution for (9/10)*x=5400 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (9/10)*x=5400 equation:



(9/10)*x=5400
We move all terms to the left:
(9/10)*x-(5400)=0
Domain of the equation: 10)*x!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
(+9/10)*x-5400=0
We multiply parentheses
9x^2-5400=0
a = 9; b = 0; c = -5400;
Δ = b2-4ac
Δ = 02-4·9·(-5400)
Δ = 194400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{194400}=\sqrt{32400*6}=\sqrt{32400}*\sqrt{6}=180\sqrt{6}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-180\sqrt{6}}{2*9}=\frac{0-180\sqrt{6}}{18} =-\frac{180\sqrt{6}}{18} =-10\sqrt{6} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+180\sqrt{6}}{2*9}=\frac{0+180\sqrt{6}}{18} =\frac{180\sqrt{6}}{18} =10\sqrt{6} $

See similar equations:

| 6/7k-2.1=6.6 | | 13x+2=7x-10 | | 2(1+4x)=5x-7 | | 1/8/1.5=x | | 99999999999999999999999b+999999999999999999999999999999999999999999999=9999999999999999999999999999999999999999999999999999 | | (x*0.05)+(x*0.05)=8250 | | 6n=2n+5 | | x+7=3x5 | | (15-2x/3)=(2x-3) | | y+2/4=3 | | P(n)=–4n2+25n–36 | | 49x^2-(x-1)^2=0 | | 2x-40=x+40 | | 2x40°=x+40° | | 5x-21=3x+19 | | 7/9y+7=35 | | 8x=4x2-1 | | –6+4j=6+10j | | 3x-5-2x=6x-10 | | -13-2/11x=-9 | | 4=(.34+2L)(.34+2l) | | 3x-5-2x=5x-10 | | 12+1/9z=20 | | 0=2x-32x^-3 | | Y4+13y+36y=0. | | 5(2b-8)=50 | | 95+x=95 | | b=4.5 | | 63+x=87 | | 5a-10=2a+20 | | 72+x=85 | | 9x2+15;x=4 |

Equations solver categories