(9/2)(x+3)=27

Simple and best practice solution for (9/2)(x+3)=27 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (9/2)(x+3)=27 equation:



(9/2)(x+3)=27
We move all terms to the left:
(9/2)(x+3)-(27)=0
Domain of the equation: 2)(x+3)!=0
x∈R
We add all the numbers together, and all the variables
(+9/2)(x+3)-27=0
We multiply parentheses ..
(+9x^2+9/2*3)-27=0
We multiply all the terms by the denominator
(+9x^2+9-27*2*3)=0
We get rid of parentheses
9x^2+9-27*2*3=0
We add all the numbers together, and all the variables
9x^2-153=0
a = 9; b = 0; c = -153;
Δ = b2-4ac
Δ = 02-4·9·(-153)
Δ = 5508
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{5508}=\sqrt{324*17}=\sqrt{324}*\sqrt{17}=18\sqrt{17}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-18\sqrt{17}}{2*9}=\frac{0-18\sqrt{17}}{18} =-\frac{18\sqrt{17}}{18} =-\sqrt{17} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+18\sqrt{17}}{2*9}=\frac{0+18\sqrt{17}}{18} =\frac{18\sqrt{17}}{18} =\sqrt{17} $

See similar equations:

| 7x+3x=10-7 | | 5y-y+1/3=6y+1/5 | | 12(2x-8)=4(5-2x)+3(7-3x1 | | |m|+2=11 | | 60=3/5x | | 0,3x-9=0 | | -5-(15y-1)=-2(7y-16)-y | | -52-7x=47+12x | | 7z/9+1=3z/6 | | -2(r+8)=-9 | | 16x=12*18 | | 4=3/4x+1 | | 1/4t+8=11 | | -7-8b=-9b | | (x+5)x35-462=1,463 | | -3(x+8)+3=11(1x-7) | | y-9=-8y | | 2n-5n=14/7 | | 6(-z)÷5=-z | | X/7+x/3=3/14 | | 3a−6=-12 | | 4x-2=3x4 | | 98=g+33 | | 11=1/2(3x-8) | | 4x2+6x+2=0 | | (5-x)/2+4=-6 | | 4x-6x+3=-2x+3 | | -168-10x=14x+48 | | -4(5n-8)=-19-3n | | 4.7-3u=8.3 | | M(n+1)=183 | | 5/2s+10=31 |

Equations solver categories