(9/4x)-(5/6)=-13/12x

Simple and best practice solution for (9/4x)-(5/6)=-13/12x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (9/4x)-(5/6)=-13/12x equation:



(9/4x)-(5/6)=-13/12x
We move all terms to the left:
(9/4x)-(5/6)-(-13/12x)=0
Domain of the equation: 4x)!=0
x!=0/1
x!=0
x∈R
Domain of the equation: 12x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
(+9/4x)-(-13/12x)-(+5/6)=0
We get rid of parentheses
9/4x+13/12x-5/6=0
We calculate fractions
(-240x^2)/1728x^2+3888x/1728x^2+1872x/1728x^2=0
We multiply all the terms by the denominator
(-240x^2)+3888x+1872x=0
We add all the numbers together, and all the variables
(-240x^2)+5760x=0
We get rid of parentheses
-240x^2+5760x=0
a = -240; b = 5760; c = 0;
Δ = b2-4ac
Δ = 57602-4·(-240)·0
Δ = 33177600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{33177600}=5760$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5760)-5760}{2*-240}=\frac{-11520}{-480} =+24 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5760)+5760}{2*-240}=\frac{0}{-480} =0 $

See similar equations:

| 32x+4-8=7 | | 54+2s+28+5s=180 | | T=1.5t+12 | | 9a-7a=18 | | 68=5+10g | | -9=f-11 | | -126=142k | | y=2+5*2 | | a+4(a-1)=3(2+1) | | -3(x+0.5)=3 | | 3=f+8/3 | | y=-10-16 | | (115+3x)=56 | | -5-4=7n+20 | | k+940=-24 | | 4y+3y+5=12 | | 0.2(y+2)=0.2y+0.4(2) | | -2.75+p=-19.25 | | r-31=33 | | 6x+42=18-12 | | 10x/7-24=8+6x/7 | | -2x-4+7x=33 | | 19+4x+3x=180 | | 16g-15g=19 | | x-2.12=7.2 | | 2(4y+1)+3y=12 | | 2p+17+45+5p+16=180 | | 5m+π3×9+5=94 | | 4=+7f | | 24x2=48 | | 2(4y+1)3y=12 | | -v=-68 |

Equations solver categories