If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(90-(1/2x+15))=2x-50
We move all terms to the left:
(90-(1/2x+15))-(2x-50)=0
Domain of the equation: 2x+15))!=0We get rid of parentheses
x∈R
(90-(1/2x+15))-2x+50=0
We multiply all the terms by the denominator
(90-(1-2x*2x+15))+50*2x+15))=0
We calculate terms in parentheses: +(90-(1-2x*2x+15)), so:We add all the numbers together, and all the variables
90-(1-2x*2x+15)
determiningTheFunctionDomain -(1-2x*2x+15)+90
We add all the numbers together, and all the variables
-(-2x*2x+16)+90
We get rid of parentheses
2x*2x-16+90
We add all the numbers together, and all the variables
2x*2x+74
Wy multiply elements
4x^2+74
Back to the equation:
+(4x^2+74)
(4x^2+74)+50*2x=0
Wy multiply elements
(4x^2+74)+100x=0
We get rid of parentheses
4x^2+100x+74=0
a = 4; b = 100; c = +74;
Δ = b2-4ac
Δ = 1002-4·4·74
Δ = 8816
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{8816}=\sqrt{16*551}=\sqrt{16}*\sqrt{551}=4\sqrt{551}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(100)-4\sqrt{551}}{2*4}=\frac{-100-4\sqrt{551}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(100)+4\sqrt{551}}{2*4}=\frac{-100+4\sqrt{551}}{8} $
| 55.675-14.6-24.9=t | | x-1+4x/2x-1=4 | | 4v-7=5 | | 2=m+6/10 | | (x-1)+(4x/2x-1)=4 | | 35=5u/4 | | 12-3x=4x-0 | | (x+30)+7=3x+21 | | 4y-y^2=12 | | x/7-8=3 | | 8-k=0 | | 1/2x+15=2x-50 | | 90-(1/2x+15)=2x-50 | | 5g-2=28-g | | 2c-61=c | | z/8+5=5 | | 2x-1/3x+1=6x-1/9x-3 | | x=3x+68 | | -4x^2-50+8=0 | | 0.5(8-4x)-10x=2x+2(6) | | 3w+17=56 | | 9(w-9)-2=-7w=7(w-8) | | y2–10y=0 | | 6-x=8+7x | | (x+1.5)*200+x*200=1050 | | 27=2w-13 | | (x-1)(4x/2x-1)=3.75 | | 6x+10=~44 | | -48=4d–4 | | 13=w-14^2 | | 5^3xx6=200 | | 3(2x+2)=4(x+3) |