(97/100)*x=25

Simple and best practice solution for (97/100)*x=25 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (97/100)*x=25 equation:



(97/100)*x=25
We move all terms to the left:
(97/100)*x-(25)=0
Domain of the equation: 100)*x!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
(+97/100)*x-25=0
We multiply parentheses
97x^2-25=0
a = 97; b = 0; c = -25;
Δ = b2-4ac
Δ = 02-4·97·(-25)
Δ = 9700
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{9700}=\sqrt{100*97}=\sqrt{100}*\sqrt{97}=10\sqrt{97}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-10\sqrt{97}}{2*97}=\frac{0-10\sqrt{97}}{194} =-\frac{10\sqrt{97}}{194} =-\frac{5\sqrt{97}}{97} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+10\sqrt{97}}{2*97}=\frac{0+10\sqrt{97}}{194} =\frac{10\sqrt{97}}{194} =\frac{5\sqrt{97}}{97} $

See similar equations:

| 97/100*x=25 | | -3(x+1)+2(x+2)=x-1 | | 2/3x+1=-1/2x+31/3 | | 3x+1/2=2x+8/5 | | 12+x/6=14 | | 32=7z-10;6 | | 6(x+2)=50 | | -24=-6m+6;5 | | 5x+10=-35;-95(-9)+10=-35 | | 3*4(^2k+8)=24 | | 3-2(c-3)=3(2c-5) | | 2x(2)+4(x(2)+3)-2=22 | | 6^x-5*6^(x-2)=186 | | m2+6m-82=0 | | 4x+x÷2=36 | | 7x+12=5x+24 | | m2+6m-1=0 | | 4x+x/2=36 | | (x-(3.5+12x/30)24+(x-35+12x/30)30=-270 | | 7+7.8h=12 | | 2=x/7+5/7 | | -3x+3(-3+x)=4 | | -24=-10t=3 | | 2a+18÷2=3a+1 | | 4=a=10/2 | | 2a+18/2=3a+1 | | 162^2-3y+33=0 | | (X)1.2/98=28/(x)1.8 | | 7x-2=10-3x=180 | | -11=3+2u | | 281=8-u | | g-3=5/3 |

Equations solver categories