If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying (9h + -11k)(9h + -11k) = 0 Multiply (9h + -11k) * (9h + -11k) (9h * (9h + -11k) + -11k * (9h + -11k)) = 0 ((9h * 9h + -11k * 9h) + -11k * (9h + -11k)) = 0 Reorder the terms: ((-99hk + 81h2) + -11k * (9h + -11k)) = 0 ((-99hk + 81h2) + -11k * (9h + -11k)) = 0 (-99hk + 81h2 + (9h * -11k + -11k * -11k)) = 0 (-99hk + 81h2 + (-99hk + 121k2)) = 0 Reorder the terms: (-99hk + -99hk + 81h2 + 121k2) = 0 Combine like terms: -99hk + -99hk = -198hk (-198hk + 81h2 + 121k2) = 0 Solving -198hk + 81h2 + 121k2 = 0 Solving for variable 'h'. Factor a trinomial. (9h + -11k)(9h + -11k) = 0Subproblem 1
Set the factor '(9h + -11k)' equal to zero and attempt to solve: Simplifying 9h + -11k = 0 Solving 9h + -11k = 0 Move all terms containing h to the left, all other terms to the right. Add '11k' to each side of the equation. 9h + -11k + 11k = 0 + 11k Combine like terms: -11k + 11k = 0 9h + 0 = 0 + 11k 9h = 0 + 11k Remove the zero: 9h = 11k Divide each side by '9'. h = 1.222222222k Simplifying h = 1.222222222kSubproblem 2
Set the factor '(9h + -11k)' equal to zero and attempt to solve: Simplifying 9h + -11k = 0 Solving 9h + -11k = 0 Move all terms containing h to the left, all other terms to the right. Add '11k' to each side of the equation. 9h + -11k + 11k = 0 + 11k Combine like terms: -11k + 11k = 0 9h + 0 = 0 + 11k 9h = 0 + 11k Remove the zero: 9h = 11k Divide each side by '9'. h = 1.222222222k Simplifying h = 1.222222222kSolution
h = {1.222222222k, 1.222222222k}
| (2x^3+4x-6)/(x+3) | | d=(4e+3)/e | | X+2/2-x/3=5 | | 11x^2-27=567 | | -1.4-2x=2.8 | | x-1.2=2.7 | | 5x+3=5x-17 | | x*4-x*3-6x^2=0 | | 12a^3+10a^2-42a=0 | | -16=8x-23-x | | 7+8x=0 | | 6(30)-80+x/2=6x | | 6t+67=2080 | | 2x+9=-x+12 | | x/5-x/4 | | 3x+20=100 | | 7x-4x=3x | | 2X-7/8+x=2x+7/2+1 | | 0=6w+18 | | -3u+19=14 | | x^2-x-11/4=0 | | 8x-3(x-4)=3(x-4)-6 | | -5x+-8x= | | 7+g+3g+4= | | 3+7c-8c= | | 8y+37=0 | | -1=-8(p+6)-5(1+p) | | (8a^3b^-9)^2/3 | | c=pd | | 9(0)+x=(9+x) | | 7(x+1)=63 | | x^2(x+1)-64(x+1)=0 |