(9x-13)(6x+23)=x

Simple and best practice solution for (9x-13)(6x+23)=x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (9x-13)(6x+23)=x equation:



(9x-13)(6x+23)=x
We move all terms to the left:
(9x-13)(6x+23)-(x)=0
We add all the numbers together, and all the variables
-1x+(9x-13)(6x+23)=0
We multiply parentheses ..
(+54x^2+207x-78x-299)-1x=0
We get rid of parentheses
54x^2+207x-78x-1x-299=0
We add all the numbers together, and all the variables
54x^2+128x-299=0
a = 54; b = 128; c = -299;
Δ = b2-4ac
Δ = 1282-4·54·(-299)
Δ = 80968
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{80968}=\sqrt{4*20242}=\sqrt{4}*\sqrt{20242}=2\sqrt{20242}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(128)-2\sqrt{20242}}{2*54}=\frac{-128-2\sqrt{20242}}{108} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(128)+2\sqrt{20242}}{2*54}=\frac{-128+2\sqrt{20242}}{108} $

See similar equations:

| 6(20)-x=6x | | 7.5d+39=-6 | | 2y+(25-10)=25,y= | | 7-(3x+2)=5-(-2x+3) | | 5+5z=7z+11 | | 5x-9=(-29) | | N=6x+5 | | 5x-15=(-25) | | 36=10m-m | | 6x−2(x+4)=6+2x | | 1x+4x=8x+2 | | -4x56-2x=74 | | .3.7x=4.44 | | i+-12=16 | | 0=55-(1.2•d) | | 0.75(36x+28)-20=0.2(45x-45) | | 0=55+(1.2•d) | | -5(x+10)=50 | | 21b=71 | | 6a+32=-4 | | 8x-0=24 | | 3x-11=(1/x)-75 | | x/3+5/6=4 | | u/2+11=35 | | 7x-13=43* | | 0.2(25x+45)-11=-0.3(24x-9) | | (13x+2)+(5x+24)+(7x+7)+(8x-3)=180 | | 2x+7x-2x+2=7x+2x | | 3y=-5+15 | | 5p+0=20 | | 3p/5-37/5=-5 | | 3/4y.y-3=21 |

Equations solver categories