(9x-16)(3x+11)=7x-5

Simple and best practice solution for (9x-16)(3x+11)=7x-5 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (9x-16)(3x+11)=7x-5 equation:



(9x-16)(3x+11)=7x-5
We move all terms to the left:
(9x-16)(3x+11)-(7x-5)=0
We get rid of parentheses
(9x-16)(3x+11)-7x+5=0
We multiply parentheses ..
(+27x^2+99x-48x-176)-7x+5=0
We get rid of parentheses
27x^2+99x-48x-7x-176+5=0
We add all the numbers together, and all the variables
27x^2+44x-171=0
a = 27; b = 44; c = -171;
Δ = b2-4ac
Δ = 442-4·27·(-171)
Δ = 20404
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{20404}=\sqrt{4*5101}=\sqrt{4}*\sqrt{5101}=2\sqrt{5101}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(44)-2\sqrt{5101}}{2*27}=\frac{-44-2\sqrt{5101}}{54} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(44)+2\sqrt{5101}}{2*27}=\frac{-44+2\sqrt{5101}}{54} $

See similar equations:

| X×42=6x | | p/14+10=12 | | -4K+35=-2-7(k-4) | | 3=h2 | | 8=3a+-4 | | 11x+94x+20=66 | | 6k+8=-10 | | -3b+9=-12 | | 4j+6=20 | | 3n1=7 | | 4(m-2)+5=-7-2(-2m-5) | | 5–(2x+6)=3x+6 | | -x/5+34=30 | | 4.7+y=-6.3 | | 5x+8=3x+8+2x | | 10/60=1/d | | 8x+3-10x=-2(x-2)+3x=13 | | g-20=20 | | 2j−11=7 | | 2x-3+2x-3=8+2x | | 6(x+3)=4x+10 | | -3(4c-3)=3+2(-6c-6) | | -6(-7-8k)=7k-40 | | 8=g=18 | | -2x-7x+81=9 | | |4u+7|=5 | | 2(6x=9-3x)=5x=21 | | f+427=8 | | 6x-58=2x-4=5x | | 1/2(8x-4)=30 | | 50=−10x+20 | | -8d+6+9d=-17+d |

Equations solver categories