(9x-16)(7x-5)=(3x+11)

Simple and best practice solution for (9x-16)(7x-5)=(3x+11) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (9x-16)(7x-5)=(3x+11) equation:



(9x-16)(7x-5)=(3x+11)
We move all terms to the left:
(9x-16)(7x-5)-((3x+11))=0
We multiply parentheses ..
(+63x^2-45x-112x+80)-((3x+11))=0
We calculate terms in parentheses: -((3x+11)), so:
(3x+11)
We get rid of parentheses
3x+11
Back to the equation:
-(3x+11)
We get rid of parentheses
63x^2-45x-112x-3x+80-11=0
We add all the numbers together, and all the variables
63x^2-160x+69=0
a = 63; b = -160; c = +69;
Δ = b2-4ac
Δ = -1602-4·63·69
Δ = 8212
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{8212}=\sqrt{4*2053}=\sqrt{4}*\sqrt{2053}=2\sqrt{2053}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-160)-2\sqrt{2053}}{2*63}=\frac{160-2\sqrt{2053}}{126} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-160)+2\sqrt{2053}}{2*63}=\frac{160+2\sqrt{2053}}{126} $

See similar equations:

| X=22,y | | Y=3x-5;(7,15) | | 0.5*x+0.5*x=x-2 | | (15x-13)=(9x+11) | | 3(v+1)−3=6 | | 5x^2+18x+35=-22x | | (A)(B)=(8x-44) | | 3^(x+2)+9^(x+1)=810 | | 2³-2z²+9²=18 | | 7/(x+5)-8(6x+30)=-2 | | 3n+5=6,3 | | 7/(x+5)-8(66x+30)=-2 | | 16x^2-28x-98=0 | | 3,6*x-2,5=4,8*x+1,1 | | -x^2+6.5x-10.5625=0 | | 16/9+6c=30 | | 2x/4-5/3=x-7/2 | | (13x+2)(5x-7)=(3x-4) | | 6+x.2=82 | | x+(x+100)=100 | | -x^2-6.5x+10.5625=0 | | -5x-7=-6x+15 | | x^2-6.5x+10.5625=0 | | 4-(b-3)=31 | | 3a+5=49 | | 3y’+2y=4 | | 4=7n | | 11x-9=-4x+23 | | 32x=31x+5 | | 3/11b=10 | | -4x-5+x=-10x+30 | | 5x2+10x+56=0 |

Equations solver categories