If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(9x-4)(2x-6)+(7x-3)(x+5)-(5+3)(5x-1)=4
We move all terms to the left:
(9x-4)(2x-6)+(7x-3)(x+5)-(5+3)(5x-1)-(4)=0
We add all the numbers together, and all the variables
(9x-4)(2x-6)+(7x-3)(x+5)-8(5x-1)-4=0
We multiply parentheses
(9x-4)(2x-6)+(7x-3)(x+5)-40x+8-4=0
We multiply parentheses ..
(+18x^2-54x-8x+24)+(7x-3)(x+5)-40x+8-4=0
We add all the numbers together, and all the variables
(+18x^2-54x-8x+24)-40x+(7x-3)(x+5)+4=0
We get rid of parentheses
18x^2-54x-8x-40x+(7x-3)(x+5)+24+4=0
We multiply parentheses ..
18x^2+(+7x^2+35x-3x-15)-54x-8x-40x+24+4=0
We add all the numbers together, and all the variables
18x^2+(+7x^2+35x-3x-15)-102x+28=0
We get rid of parentheses
18x^2+7x^2+35x-3x-102x-15+28=0
We add all the numbers together, and all the variables
25x^2-70x+13=0
a = 25; b = -70; c = +13;
Δ = b2-4ac
Δ = -702-4·25·13
Δ = 3600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{3600}=60$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-70)-60}{2*25}=\frac{10}{50} =1/5 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-70)+60}{2*25}=\frac{130}{50} =2+3/5 $
| 5+10x-3-2x=-38 | | -2=r/3-1 | | 2x+5(-5x-13)=142 | | y+1.6=5.52 | | 2x+24+5x=180 | | 115=x+27 | | 4q^2/4-9q^2/20=18 | | 2/4=7w | | f-26=72 | | 19z+21=17 | | 4q^2-9q^2=18 | | 10+8k=7k | | (x-1)^2+8^2=x^2 | | 12/b=100 | | 17+m=22 | | -12d-4=-14-10 | | (4x+18)=(4x-22) | | 2(3x+7)=2(7x-2) | | 69y=34(2y+5) | | 12/9=w/12 | | 2m2+11m–13=0 | | -.4x=1 | | 2x+3-4=7+5x | | 6+e=45 | | 7+x/4=8 | | d+21=50 | | 6+2(3-2x)=0 | | 20/b=15/9 | | 8+c=33 | | 8/7x+3/4x=53/28 | | b+15=40 | | 4(5x-6x)=96 |