(A-3)(a-3)+3a(a-2)=4(a+2)

Simple and best practice solution for (A-3)(a-3)+3a(a-2)=4(a+2) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (A-3)(a-3)+3a(a-2)=4(a+2) equation:



(-3)(A-3)+3A(A-2)=4(A+2)
We move all terms to the left:
(-3)(A-3)+3A(A-2)-(4(A+2))=0
We multiply parentheses
3A^2+(-3)(A-3)-6A-(4(A+2))=0
We multiply parentheses ..
3A^2+(-3A+9)-6A-(4(A+2))=0
We calculate terms in parentheses: -(4(A+2)), so:
4(A+2)
We multiply parentheses
4A+8
Back to the equation:
-(4A+8)
We add all the numbers together, and all the variables
3A^2-6A+(-3A+9)-(4A+8)=0
We get rid of parentheses
3A^2-6A-3A-4A+9-8=0
We add all the numbers together, and all the variables
3A^2-13A+1=0
a = 3; b = -13; c = +1;
Δ = b2-4ac
Δ = -132-4·3·1
Δ = 157
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$A_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$A_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$A_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-13)-\sqrt{157}}{2*3}=\frac{13-\sqrt{157}}{6} $
$A_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-13)+\sqrt{157}}{2*3}=\frac{13+\sqrt{157}}{6} $

See similar equations:

| 7s-6=3s+4 | | 10×4n=80 | | (2y-40)(8y-40)=-576 | | 9*x=18 | | 9*x=18 | | 9*x=18 | | 2x^2+9√17x-18=0 | | 88x/100=880 | | 8x/8-4=16 | | 2(x+6)+2=7+3x | | 2x+3/4=12x+6 | | x+x+x+x+x+x+x+x=180 | | 7x/12=42 | | 7x/12=43 | | 3/5×y-2=7/5 | | 3(8+4x)=24 | | 1*x=1.25 | | A=2x²+24x+46. | | 0.02x+x=0 | | 6e-21=3e+6 | | 9+xxxx=11 | | 5x+5/x=52 | | x+(5/100)x=450 | | 7(x+3)=8x4 | | 7(x+3)=8+4 | | 7(x+3)=8+4 | | 7(x+3)=8+4 | | 10x-100=500 | | 10x-100=500 | | -4=4-4x4+8 | | 3.5/100=x/5 | | 1÷a=2/3 |

Equations solver categories