(C-4)(x-18)=x(x-14)

Simple and best practice solution for (C-4)(x-18)=x(x-14) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (C-4)(x-18)=x(x-14) equation:



(-4)(C-18)=C(C-14)
We move all terms to the left:
(-4)(C-18)-(C(C-14))=0
We multiply parentheses ..
(-4C+72)-(C(C-14))=0
We calculate terms in parentheses: -(C(C-14)), so:
C(C-14)
We multiply parentheses
C^2-14C
Back to the equation:
-(C^2-14C)
We get rid of parentheses
-C^2-4C+14C+72=0
We add all the numbers together, and all the variables
-1C^2+10C+72=0
a = -1; b = 10; c = +72;
Δ = b2-4ac
Δ = 102-4·(-1)·72
Δ = 388
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$C_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$C_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{388}=\sqrt{4*97}=\sqrt{4}*\sqrt{97}=2\sqrt{97}$
$C_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-2\sqrt{97}}{2*-1}=\frac{-10-2\sqrt{97}}{-2} $
$C_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+2\sqrt{97}}{2*-1}=\frac{-10+2\sqrt{97}}{-2} $

See similar equations:

| 6y+3+3y+7+13y-10=180 | | x+4x=3+6x | | 7b+5(b—2)=26 | | y=1.75*39-20 | | y=1.75*26-20 | | y=1.75*14-20 | | y=1.75*7-20 | | 210x=1000 | | 19g-5g-12g-g=8 | | 5-10=2+5x | | 1000=2^y | | y=0.50*45+10 | | 7x+6-5x-3-3x+4-2x=-20 | | 3b+4(b+2)=-20 | | y=0.50*36+10 | | 5x-6+2x-9-3x=-123 | | y=0.50*27+10 | | 9x+2x-6-3x+10=68 | | y=0.50*18+10 | | y=0.50*9+10 | | 8(=5x-9)8(5x-9) | | 45-r=27 | | x/7-12=9 | | x=2(360/2x+8) | | y=1.50*49 | | y=1.50*31 | | x/4+7=26 | | 3j+7=46=46 | | y=1.50*24 | | -15q+17+8=-11-13q | | y=1.50*16 | | y=1.50*3 |

Equations solver categories