(M+2)(m-2)=(2m+1)(2m-1)

Simple and best practice solution for (M+2)(m-2)=(2m+1)(2m-1) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (M+2)(m-2)=(2m+1)(2m-1) equation:



(+2)(M-2)=(2M+1)(2M-1)
We move all terms to the left:
(+2)(M-2)-((2M+1)(2M-1))=0
We add all the numbers together, and all the variables
2(M-2)-((2M+1)(2M-1))=0
We use the square of the difference formula
4M^2+2(M-2)+1=0
We multiply parentheses
4M^2+2M-4+1=0
We add all the numbers together, and all the variables
4M^2+2M-3=0
a = 4; b = 2; c = -3;
Δ = b2-4ac
Δ = 22-4·4·(-3)
Δ = 52
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$M_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$M_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{52}=\sqrt{4*13}=\sqrt{4}*\sqrt{13}=2\sqrt{13}$
$M_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{13}}{2*4}=\frac{-2-2\sqrt{13}}{8} $
$M_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{13}}{2*4}=\frac{-2+2\sqrt{13}}{8} $

See similar equations:

| 5(2p-1)=-25 | | 2(3c-5)=4 | | 3(b+5)=36 | | 7(m-4)=56 | | 3(4y+3)=63 | | 10(2a-3)=50 | | x*30=2100 | | 4y+32-6y=22 | | 2^(4x)-5*2^(2x)+4=0 | | 5x=3.33 | | 21=h+9 | | 21=h=9 | | m=5=4 | | X^2-50x=300 | | 5y-4/8-y-3/5=y+6/4 | | (x–3)(2x-4)=0 | | 3x+4=52. | | 8x-6=3(x-1)+5x | | X+2(2x-20)=180 | | n2-16n+64=0 | | 12=x=+5 | | -2x-4=2(x-8) | | 1/3/3/4=2/5/n | | 1334=25n | | -5x-2x(x+2)-2x=18 | | 2x+11x=24 | | 3(2-x)-3x=-6x+6 | | 25=3x/10+1 | | (1-x)^4=0.1 | | 5/7x+4/7=3/7x+17/14 | | Y-23t=88 | | x+x*0.02=34953.52 |

Equations solver categories