If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(+5)(M-4)=(M-6)(M+1)
We move all terms to the left:
(+5)(M-4)-((M-6)(M+1))=0
We add all the numbers together, and all the variables
5(M-4)-((M-6)(M+1))=0
We multiply parentheses
5M-((M-6)(M+1))-20=0
We multiply parentheses ..
-((+M^2+M-6M-6))+5M-20=0
We calculate terms in parentheses: -((+M^2+M-6M-6)), so:We add all the numbers together, and all the variables
(+M^2+M-6M-6)
We get rid of parentheses
M^2+M-6M-6
We add all the numbers together, and all the variables
M^2-5M-6
Back to the equation:
-(M^2-5M-6)
5M-(M^2-5M-6)-20=0
We get rid of parentheses
-M^2+5M+5M+6-20=0
We add all the numbers together, and all the variables
-1M^2+10M-14=0
a = -1; b = 10; c = -14;
Δ = b2-4ac
Δ = 102-4·(-1)·(-14)
Δ = 44
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$M_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$M_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{44}=\sqrt{4*11}=\sqrt{4}*\sqrt{11}=2\sqrt{11}$$M_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-2\sqrt{11}}{2*-1}=\frac{-10-2\sqrt{11}}{-2} $$M_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+2\sqrt{11}}{2*-1}=\frac{-10+2\sqrt{11}}{-2} $
| 7-5n=97 | | 10z=6010 | | x+27÷27=4 | | 9*7=(x-6)(x-4) | | 27x*16x=24*18 | | −1–5h=14 | | 2x+3x+9+x+12=180 | | .2201n+37460.49=96226.02 | | 40-17x=7-6x | | 3x+9+3x+4+8x-1=180 | | 4(r+5)=-13 | | 4(2x-5)=2x-2 | | 4(r=5)=-13 | | -7y=-5 | | 29x=-5 | | (3x-4)=(2x+2) | | 0.7906-1.58x=0.005+x | | 44.5+8y=56 | | x+25°=180° | | -1/4y=-1/2 | | 9+5x=9+2× | | 8(3m-12)=816 | | 6^(x-4)=1296 | | 10x+4–3+8x+2x=3 | | 6x-2=×+13 | | 1+x/5=x-7 | | (4/a)+(5/3a)=3 | | -45h+44=179 | | 2,9b–5,1=-0,1b+0,9* | | 4m=15+m | | 8-4n=68 | | 4^5x=20 |