(M-n+k)(m+4n-3k)=0

Simple and best practice solution for (M-n+k)(m+4n-3k)=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (M-n+k)(m+4n-3k)=0 equation:


Simplifying
(M + -1n + k)(m + 4n + -3k) = 0

Reorder the terms:
(M + k + -1n)(m + 4n + -3k) = 0

Reorder the terms:
(M + k + -1n)(-3k + m + 4n) = 0

Multiply (M + k + -1n) * (-3k + m + 4n)
(M(-3k + m + 4n) + k(-3k + m + 4n) + -1n * (-3k + m + 4n)) = 0
((-3k * M + m * M + 4n * M) + k(-3k + m + 4n) + -1n * (-3k + m + 4n)) = 0
((-3kM + mM + 4nM) + k(-3k + m + 4n) + -1n * (-3k + m + 4n)) = 0
(-3kM + mM + 4nM + (-3k * k + m * k + 4n * k) + -1n * (-3k + m + 4n)) = 0

Reorder the terms:
(-3kM + mM + 4nM + (km + 4kn + -3k2) + -1n * (-3k + m + 4n)) = 0
(-3kM + mM + 4nM + (km + 4kn + -3k2) + -1n * (-3k + m + 4n)) = 0
(-3kM + mM + 4nM + km + 4kn + -3k2 + (-3k * -1n + m * -1n + 4n * -1n)) = 0
(-3kM + mM + 4nM + km + 4kn + -3k2 + (3kn + -1mn + -4n2)) = 0

Reorder the terms:
(-3kM + km + 4kn + 3kn + -3k2 + mM + -1mn + 4nM + -4n2) = 0

Combine like terms: 4kn + 3kn = 7kn
(-3kM + km + 7kn + -3k2 + mM + -1mn + 4nM + -4n2) = 0

Solving
-3kM + km + 7kn + -3k2 + mM + -1mn + 4nM + -4n2 = 0

Solving for variable 'k'.

The solution to this equation could not be determined.

See similar equations:

| -7=3(t-5)-7 | | 3-x+9=14 | | 2c+8=(-10c) | | 16x^4-25=y | | (6a+5)=-4a | | x+4=6x+11 | | (6a+5)=4a | | -3x+x=23 | | X-36=3(x+4) | | 2(4w-1)=-3(4w+2) | | Y=5-(3.750-0.500)-2.375 | | X+(x-3)=23 | | 5x+x=r | | -0.71+0.2x=0.792 | | 4x-8=2(2-3) | | 2x-8x-24=0 | | (2)4w-1=(3)4w+2 | | 8w-2=12w-6 | | 24-4p=10 | | -3-4(-8+4x)=(-3)(1+8x) | | 0.2d+0.3d+5d=-19.5+1.5 | | 124-4p=10 | | z^2+2z+2-i=0 | | 3k+2= | | 5x+4-3x=-6x-3+8x | | 17+8x=65 | | 3k+2=-2(k+2) | | (y+8)+0=(y+8) | | 5(r+9)6-2c(1-r)=1 | | 2-2(2x+1)+7x=10 | | -14x+8=-6 | | 3c+5=6c+8 |

Equations solver categories