(N+9)-2=16x2

Simple and best practice solution for (N+9)-2=16x2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (N+9)-2=16x2 equation:



(+9)-2=16N^2
We move all terms to the left:
(+9)-2-(16N^2)=0
We add all the numbers together, and all the variables
-16N^2-2+9=0
We add all the numbers together, and all the variables
-16N^2+7=0
a = -16; b = 0; c = +7;
Δ = b2-4ac
Δ = 02-4·(-16)·7
Δ = 448
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$N_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$N_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{448}=\sqrt{64*7}=\sqrt{64}*\sqrt{7}=8\sqrt{7}$
$N_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{7}}{2*-16}=\frac{0-8\sqrt{7}}{-32} =-\frac{8\sqrt{7}}{-32} =-\frac{\sqrt{7}}{-4} $
$N_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{7}}{2*-16}=\frac{0+8\sqrt{7}}{-32} =\frac{8\sqrt{7}}{-32} =\frac{\sqrt{7}}{-4} $

See similar equations:

| -8(6x-7)=-184 | | 7n=$8.61. | | 727=s+48 | | 4(3n+5)=92 | | m-3/13=11/18 | | 12x+44x+24=0 | | 34n-1=3 | | 0.4(3x+4)=40 | | 21u=294 | | 12.3=x+6 | | 8+b/4=13 | | 136=7x+7x-4 | | 23c=483 | | 13(5x-3)=91 | | 8x+3–2x–5=-14 | | 12a+9=6a+39   | | F(x)=3x4+2x3-13x2-8x+4 | | 5x+-7=50 | | 871=y+77 | | 20+2x=4+6x | | 13(5x-3=91 | | 2x–7=9 | | 2v-2(-4v+3)=-66 | | A=1/2h(6+8) | | -0.6x-4=20 | | (2n–6)=(n–8) | | 12a +  9 =  6a +  39   | | 5x-4=18+2=12 | | 1x+10=65-4x | | 2x+3x-4=-19 | | 4(-2+8)+8-(5x+4)+3x=-9-0.5(12x-8)-11+x+7 | | 1.5x-11=19 |

Equations solver categories