(N-1)n(n+1)=3360

Simple and best practice solution for (N-1)n(n+1)=3360 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (N-1)n(n+1)=3360 equation:


Simplifying
(N + -1) * n(n + 1) = 3360

Reorder the terms:
(-1 + N) * n(n + 1) = 3360

Reorder the terms:
(-1 + N) * n(1 + n) = 3360

Reorder the terms for easier multiplication:
n(-1 + N)(1 + n) = 3360

Multiply (-1 + N) * (1 + n)
n(-1(1 + n) + N(1 + n)) = 3360
n((1 * -1 + n * -1) + N(1 + n)) = 3360
n((-1 + -1n) + N(1 + n)) = 3360
n(-1 + -1n + (1 * N + n * N)) = 3360
n(-1 + -1n + (1N + nN)) = 3360

Reorder the terms:
n(-1 + 1N + -1n + nN) = 3360
n(-1 + 1N + -1n + nN) = 3360
(-1 * n + 1N * n + -1n * n + nN * n) = 3360
(-1n + 1nN + -1n2 + n2N) = 3360

Solving
-1n + 1nN + -1n2 + n2N = 3360

Solving for variable 'n'.

Reorder the terms:
-3360 + -1n + 1nN + -1n2 + n2N = 3360 + -3360

Combine like terms: 3360 + -3360 = 0
-3360 + -1n + 1nN + -1n2 + n2N = 0

The solution to this equation could not be determined.

See similar equations:

| Cos68=x/7.5 | | Lne^7=x+2 | | -log(x)=9 | | 107=x-22 | | Cos68=x/8 | | .50[2(x-10)-4]=-20 | | .5(7x+48)=-(.5x-3)+4(x+5) | | 2(3+x)=4(3x-1)-10 | | √53.3=2x/0.300-x | | 1/4(y)=7 | | 2(3x+4)+2=4+3x | | (20x^3)-54x=0 | | Y=x+9x+20 | | 4(x)+8=7.2+5x | | X^2+.75x^2=25 | | -4x+17y=12-3x+81y | | 7+3[(3+2)4-(24+2)]=x | | 14y-3x=9-y | | X+.75x=5 | | x-y^2=49 | | K^2-11k=24 | | 4(j-3)=-8 | | -43=-8+5w | | x^4+6x^3-26x+15=0 | | 8(5c-6)=-24+4c | | 15p^2+99p-42=0 | | x-35=42 | | 6(p-2)=2p | | -76+x=13 | | -30=5w-5 | | 17+x=-53 | | -53.25=x+64.2 |

Equations solver categories