(T-3)(t-3)-(t-2)(t-2)=5

Simple and best practice solution for (T-3)(t-3)-(t-2)(t-2)=5 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (T-3)(t-3)-(t-2)(t-2)=5 equation:



(-3)(T-3)-(T-2)(T-2)=5
We move all terms to the left:
(-3)(T-3)-(T-2)(T-2)-(5)=0
We multiply parentheses ..
(-3T+9)-(T-2)(T-2)-5=0
We get rid of parentheses
-3T-(T-2)(T-2)+9-5=0
We multiply parentheses ..
-(+T^2-2T-2T+4)-3T+9-5=0
We add all the numbers together, and all the variables
-(+T^2-2T-2T+4)-3T+4=0
We get rid of parentheses
-T^2+2T+2T-3T-4+4=0
We add all the numbers together, and all the variables
-1T^2+T=0
a = -1; b = 1; c = 0;
Δ = b2-4ac
Δ = 12-4·(-1)·0
Δ = 1
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$T_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$T_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{1}=1$
$T_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-1}{2*-1}=\frac{-2}{-2} =1 $
$T_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+1}{2*-1}=\frac{0}{-2} =0 $

See similar equations:

| 8(m-5)=6(3m=7)=1 | | x-11=30 | | 9-4n=13-6 | | 4y/2=90 | | 6x-47=115 | | x-11.8=30 | | 22-n=-8 | | n-22=-8 | | 10x+9-x=90-10x+x+27 | | X+33=4x-33 | | 9=7+t | | 2.8+x=8.6 | | -11=-3p-2 | | ×+4y=0 | | 20+c=3c | | 4(x+2)+2x=62-3x | | 16*x=1.28 | | 5(2×-3)-3(3x-7)=5 | | 15.98*x=1.3 | | m^2-2m+17=0 | | -4(-4d-5)=9 | | 5u+6-12=-29 | | 40y^¹,y=5 | | (2x+12)+1=33 | | 3v+10=70 | | 0=x^2-10x-600 | | w/2+16=24 | | 56=3y+11 | | 10+n=15n | | x^2-8/2x-4=12x-18 | | 4p+12=36-2 | | 7(25-7q)-2q=2(3q-25 |

Equations solver categories