(W+8)(w+8)(w+8)=51

Simple and best practice solution for (W+8)(w+8)(w+8)=51 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (W+8)(w+8)(w+8)=51 equation:



(+8)(W+8)(W+8)=51
We move all terms to the left:
(+8)(W+8)(W+8)-(51)=0
We add all the numbers together, and all the variables
8(W+8)(W+8)-51=0
We multiply parentheses ..
8(+W^2+8W+8W+64)-51=0
We multiply parentheses
8W^2+64W+64W+512-51=0
We add all the numbers together, and all the variables
8W^2+128W+461=0
a = 8; b = 128; c = +461;
Δ = b2-4ac
Δ = 1282-4·8·461
Δ = 1632
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$W_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$W_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1632}=\sqrt{16*102}=\sqrt{16}*\sqrt{102}=4\sqrt{102}$
$W_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(128)-4\sqrt{102}}{2*8}=\frac{-128-4\sqrt{102}}{16} $
$W_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(128)+4\sqrt{102}}{2*8}=\frac{-128+4\sqrt{102}}{16} $

See similar equations:

| -6-9p=7 | | 19–3p=-17p–9 | | 8x=2;x=1/4 | | 2=4x+9/7+x-9/6 | | 8x-6=-(5x-12) | | x+40+x+99=199 | | x+-10=-2x+2 | | 15x-15x+9=1 | | 8x=8;x=1 | | 2(6x+6x+6*6)=6*6x | | -(5v-6)+8=15-4v | | 4x+2{4-2(x+2}=2x-4 | | -7b+7=0 | | 250-45x=2 | | -11x-6x=x | | -1+29x+56x=90 | | 9x-(5x+9)=7x-36 | | 5(1+3b)-2(-7+6)=-3+7b-2 | | 3.6+2m=10 | | -7+4x=8x+3-2x | | 77-v=196 | | x+40+x+99=121 | | -3(-8w+2)-8w=4(w-1)-4 | | 5-y/3=-1 | | -3d-7=5-5d | | (t+4)^2=24 | | x+40+x+99=122 | | -7-2|x-7|=-5 | | y^2-12=24 | | -6n+30=6(1-3n) | | 3w+6=w-14 | | -10=x=3 |

Equations solver categories