(X(x-2))/60=720

Simple and best practice solution for (X(x-2))/60=720 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (X(x-2))/60=720 equation:



(X(X-2))/60=720
We move all terms to the left:
(X(X-2))/60-(720)=0
We multiply all the terms by the denominator
(X(X-2))-720*60=0
We calculate terms in parentheses: +(X(X-2)), so:
X(X-2)
We multiply parentheses
X^2-2X
Back to the equation:
+(X^2-2X)
We add all the numbers together, and all the variables
(X^2-2X)-43200=0
We get rid of parentheses
X^2-2X-43200=0
a = 1; b = -2; c = -43200;
Δ = b2-4ac
Δ = -22-4·1·(-43200)
Δ = 172804
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{172804}=\sqrt{4*43201}=\sqrt{4}*\sqrt{43201}=2\sqrt{43201}$
$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-2\sqrt{43201}}{2*1}=\frac{2-2\sqrt{43201}}{2} $
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+2\sqrt{43201}}{2*1}=\frac{2+2\sqrt{43201}}{2} $

See similar equations:

| 8.7=3r | | -5(3a-4)=7a+27-7 | | g+3.3=17.3 | | 2.5x=x.5 | | v+-9.7=10.2 | | Y=5x2-10x+1 | | 6/7t-5=1/7t+5 | | t/19+3=6 | | t19+3=6 | | 10b+3=13 | | (x+30)+(3x-10)+4x=180 | | -2x²+18x-36=0 | | b-306=-125 | | c-613=-23 | | 7/x=9.8 | | 4n+6=6n−19 | | 13=h+8 | | b+186=958 | | -4x-26=-18-8x | | –2(h−8)+6=6 | | X=413y=65 | | f+16=66 | | 11x-110=528 | | 69=u+8 | | -53=h-81 | | 3x+15°=x+55° | | 12=13v+9v | | 0.2(x–6)=0.3x+5–3+0.1x | | 4=0.25x-1 | | 3+r÷2=7 | | -5g+2.3+-18.8=g | | 4x–14=10 |

Equations solver categories