(X)-(8/11x-5)=41

Simple and best practice solution for (X)-(8/11x-5)=41 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (X)-(8/11x-5)=41 equation:



(X)-(8/11X-5)=41
We move all terms to the left:
(X)-(8/11X-5)-(41)=0
Domain of the equation: 11X-5)!=0
X∈R
We get rid of parentheses
X-8/11X+5-41=0
We multiply all the terms by the denominator
X*11X+5*11X-41*11X-8=0
Wy multiply elements
11X^2+55X-451X-8=0
We add all the numbers together, and all the variables
11X^2-396X-8=0
a = 11; b = -396; c = -8;
Δ = b2-4ac
Δ = -3962-4·11·(-8)
Δ = 157168
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{157168}=\sqrt{16*9823}=\sqrt{16}*\sqrt{9823}=4\sqrt{9823}$
$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-396)-4\sqrt{9823}}{2*11}=\frac{396-4\sqrt{9823}}{22} $
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-396)+4\sqrt{9823}}{2*11}=\frac{396+4\sqrt{9823}}{22} $

See similar equations:

| 14/5=7/5x | | 34x-42=124 | | 251.33=x-(x*0.29) | | x*1.1=10 | | 590.54=x-(x*0.19) | | 590.54=x+(x*0.19) | | 3x+200=12x-7 | | 95.8+x=180 | | -d^2+4d+3=0 | | 20/x=0.5 | | 8x8+3x=70 | | 4x+63=87 | | 16=9.5x+26 | | -2+14x+110=0 | | 5x+24=8x+12 | | V=(8-2x)*(15-2x)*x | | 52=z+16 | | 2x-10=4x-20+10 | | 3x+8=-34+4x | | 6n-3=84 | | 13.5=3^x | | (2x+3)^3=4096 | | 6d=406 | | 9^x+1-3^2x+1=162 | | 3x+x=6+16 | | 4/5y=-13 | | -(-10x+1)-4x=7 | | 25=4n+1 | | 29x=85 | | -7-9=-2x+31 | | 3x^2-6x-88=0 | | 2y+5=10y-91 |

Equations solver categories