(X+1)(x+2)=1320

Simple and best practice solution for (X+1)(x+2)=1320 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (X+1)(x+2)=1320 equation:



(X+1)(X+2)=1320
We move all terms to the left:
(X+1)(X+2)-(1320)=0
We multiply parentheses ..
(+X^2+2X+X+2)-1320=0
We get rid of parentheses
X^2+2X+X+2-1320=0
We add all the numbers together, and all the variables
X^2+3X-1318=0
a = 1; b = 3; c = -1318;
Δ = b2-4ac
Δ = 32-4·1·(-1318)
Δ = 5281
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-\sqrt{5281}}{2*1}=\frac{-3-\sqrt{5281}}{2} $
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+\sqrt{5281}}{2*1}=\frac{-3+\sqrt{5281}}{2} $

See similar equations:

| 48/8=2x | | 3a–(4+2a)= | | 36+36=3x+18 | | 82-26=2x4x | | 63/9=1x | | (X-2)(x+9)=2x+18 | | 0x1+0x2+0x3+0x4+0x5=0 | | 5x+3=7x–4. | | T=-15t+9 | | X/6-x/5+x/3=x/15+7 | | 7.2x=3.4 | | X^2+3x-2.26=0/ | | n+n+2+n+4=408 | | n+n+1+n+2=159 | | n+n+2+n+4=174 | | 24-d=10d-9 | | 3^x+3^{x-2}+3^{x+2}=91 | | 11x-7=-39+7x | | 2x+1.20*3x=208 | | 33x-42x+21/2=-14x | | 2x-3(4x+2)=10x-(-16x=+40) | | 5x*5x+7=22 | | 5x^2–4x–3=0 | | 5x2–4x–3=0 | | 4n-8•3=5 | | −5|2x−3|=−35 | | 5y+3−3y+7=16 | | 2x-(3x-4)=2x+1,x= | | (b+4)(b-4)=6b | | 2)3x-10)=4 | | 12=1.2(n-2) | | x^2-5x=-296 |

Equations solver categories