(X+1)(x-4)=(2x+2)(x-4)

Simple and best practice solution for (X+1)(x-4)=(2x+2)(x-4) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (X+1)(x-4)=(2x+2)(x-4) equation:



(X+1)(X-4)=(2X+2)(X-4)
We move all terms to the left:
(X+1)(X-4)-((2X+2)(X-4))=0
We multiply parentheses ..
(+X^2-4X+X-4)-((2X+2)(X-4))=0
We calculate terms in parentheses: -((2X+2)(X-4)), so:
(2X+2)(X-4)
We multiply parentheses ..
(+2X^2-8X+2X-8)
We get rid of parentheses
2X^2-8X+2X-8
We add all the numbers together, and all the variables
2X^2-6X-8
Back to the equation:
-(2X^2-6X-8)
We get rid of parentheses
X^2-2X^2-4X+X+6X-4+8=0
We add all the numbers together, and all the variables
-1X^2+3X+4=0
a = -1; b = 3; c = +4;
Δ = b2-4ac
Δ = 32-4·(-1)·4
Δ = 25
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{25}=5$
$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-5}{2*-1}=\frac{-8}{-2} =+4 $
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+5}{2*-1}=\frac{2}{-2} =-1 $

See similar equations:

| -2/3x=4/3 | | 4x-6-2x=-6 | | 3x-21=5x-1 | | 1+5r-2=9 | | -8(2x-9)=20-12× | | (b-2)/6=b/2 | | 1.5(8k+2)=-36 | | 2(5x+9)=18 | | 23x-26=8x-21 | | 40/65=x/104 | | 2r=2+2r | | -2(-5+2x)=-14 | | 3x+3=-8 | | 3x+42=-2(x-6) | | -7g=28 | | -2(50+6x)-1=129-2x | | 18x+7-2x+4=-20-17 | | z–4z=-3z | | -6(x+4)+9=-5(x+6) | | 30=-3x+6x+9 | | -94-5x=-12x+39 | | 9x-1=0x+49 | | -8(x-9)=-2x+24 | | 5x+1=6+6x | | -7p+2+8p=10 | | 2r+1=-1+2r | | 30=-3x+6x+19 | | -6-4v=-3-5(-7-8v) | | (w-7)(w+3)=7 | | t-1/2=1/2 | | 4u+8=-2(u+8) | | -x-4=-4-x |

Equations solver categories