(X+10)(x-4)=(2x+4)

Simple and best practice solution for (X+10)(x-4)=(2x+4) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (X+10)(x-4)=(2x+4) equation:



(X+10)(X-4)=(2X+4)
We move all terms to the left:
(X+10)(X-4)-((2X+4))=0
We multiply parentheses ..
(+X^2-4X+10X-40)-((2X+4))=0
We calculate terms in parentheses: -((2X+4)), so:
(2X+4)
We get rid of parentheses
2X+4
Back to the equation:
-(2X+4)
We get rid of parentheses
X^2-4X+10X-2X-40-4=0
We add all the numbers together, and all the variables
X^2+4X-44=0
a = 1; b = 4; c = -44;
Δ = b2-4ac
Δ = 42-4·1·(-44)
Δ = 192
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{192}=\sqrt{64*3}=\sqrt{64}*\sqrt{3}=8\sqrt{3}$
$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-8\sqrt{3}}{2*1}=\frac{-4-8\sqrt{3}}{2} $
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+8\sqrt{3}}{2*1}=\frac{-4+8\sqrt{3}}{2} $

See similar equations:

| (X+10)(x-4)=(x+2)^2 | | a-(-15)=10 | | -5x-20=16-3x | | (2x+10)(2x+7)=2x(2x)=342 | | 3/2(5/6-4x/1)-2/3=3/12 | | 5.2x-9.3=16.7 | | 4+5x=3x+26 | | 6^(3x-2)=8 | | 13x-80=6x+179 | | 2(-8+4x)=16 | | -14x-15=-127 | | Y+11=5y+3 | | 7/k-7=6/k | | 6x+4=16=- | | 15x-8-3x=18 | | -9x-138=5x+198 | | -5+5x=-8+6x | | 2y(y-12)-33=0 | | 10x-31=14x+45 | | -12+1x/11=-3 | | 2^(q+2)-2^(q)=48 | | 20+15x=30+10x | | -2/9x+19=-13 | | 16y+48=32y | | 3.2y-1.4y=-9.# | | X^2-y^2=-45 | | 25d=-1775 | | x/3-2=x+4 | | 26=x/7+2 | | 26+45+b=180 | | 27x-31x=9-13 | | 5x/x-2+2/x+2=-6/x^2-2x |

Equations solver categories