If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(X+139)(X+57)=180
We move all terms to the left:
(X+139)(X+57)-(180)=0
We multiply parentheses ..
(+X^2+57X+139X+7923)-180=0
We get rid of parentheses
X^2+57X+139X+7923-180=0
We add all the numbers together, and all the variables
X^2+196X+7743=0
a = 1; b = 196; c = +7743;
Δ = b2-4ac
Δ = 1962-4·1·7743
Δ = 7444
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{7444}=\sqrt{4*1861}=\sqrt{4}*\sqrt{1861}=2\sqrt{1861}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(196)-2\sqrt{1861}}{2*1}=\frac{-196-2\sqrt{1861}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(196)+2\sqrt{1861}}{2*1}=\frac{-196+2\sqrt{1861}}{2} $
| 3x+12+6=5x-5+1 | | 3.8g=-104.13 | | 3x+12+6=15x-5+1 | | 16a=0.096 | | 3x+12+6=15x-5+ | | 24=4x-8+2x | | Y-11=-1/2(x/ | | Y=|x|+2 | | -4(-5t-4)=2(10t+8) | | y+25y=0 | | 3x^2+4x^2=1000 | | 4x+6/10=8 | | 54.82x2.15=117.863 | | 4x+6÷10=8 | | X^2-14x+30=9 | | 3(2p+1)+9p+2=140 | | 2x+1)+3=3(x-1) | | 7x^2+36x+1=-4 | | 2x/9+4x/3=14 | | 290t^2+5t+30=0 | | 10x+10=1x+1 | | 2x+x+25=0 | | 12x+9x-6+2=8x+2-6 | | |5X-8|=12+x | | 11x+18x-8+5=-5x+8-8 | | 12×24=x | | 63=9x+8-4x | | 8x+6=6-5x | | 56=k- | | 5+9x=25x+5 | | 2/3(6c=4)-(8c-5)= | | 10(1.375)^16t=70 |