(X+2)(x-4)=(x+3)2

Simple and best practice solution for (X+2)(x-4)=(x+3)2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (X+2)(x-4)=(x+3)2 equation:



(X+2)(X-4)=(X+3)2
We move all terms to the left:
(X+2)(X-4)-((X+3)2)=0
We multiply parentheses ..
(+X^2-4X+2X-8)-((X+3)2)=0
We calculate terms in parentheses: -((X+3)2), so:
(X+3)2
We multiply parentheses
2X+6
Back to the equation:
-(2X+6)
We get rid of parentheses
X^2-4X+2X-2X-8-6=0
We add all the numbers together, and all the variables
X^2-4X-14=0
a = 1; b = -4; c = -14;
Δ = b2-4ac
Δ = -42-4·1·(-14)
Δ = 72
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{72}=\sqrt{36*2}=\sqrt{36}*\sqrt{2}=6\sqrt{2}$
$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-6\sqrt{2}}{2*1}=\frac{4-6\sqrt{2}}{2} $
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+6\sqrt{2}}{2*1}=\frac{4+6\sqrt{2}}{2} $

See similar equations:

| -10=3-p | | 3x+4x-12+9=7x+28-14 | | 8b-3=8b-8 | | 69=5y+9 | | 7m=224 | | 1/6x-2/3=3/5x+5/3 | | 8(2.4+9x)=11(7x-3.9)-5x | | 6x/4=9 | | 300+40=x | | 7-3=2j-j | | 11-73=x | | 6x-1.4=2(2x+5.2)+2x | | 4(-5u+6u)=-28 | | 5(7x-4)=225 | | -3-2x=1-x | | 2(5x-3=14 | | 3x-2.4=2(1.5x+1.8)+2 | | 35=5y-10 | | -2.5z=20 | | 4.2q-2.3-5.7q=-0.5q-2.3 | | 15.3-3.4x=6.3-4.6x | | 492.2d-1)-0.8d=23 | | 4v+17=85 | | 3b+8b=3(b-8)+2(2b-4) | | 5x(2x)(7)=49 | | 2(0.75x-4)=3(3+0.5x) | | 5x-2x+4-x=2(x-7)+11 | | 3b-6=5b-8 | | -2x(10+5x)+10=2x-118 | | 6.5=7.9-0.2x | | 5(8x+7)=275 | | 4x+2x-5=8(0.25x-1) |

Equations solver categories