(X+3)(2x-6)=180

Simple and best practice solution for (X+3)(2x-6)=180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (X+3)(2x-6)=180 equation:



(X+3)(2X-6)=180
We move all terms to the left:
(X+3)(2X-6)-(180)=0
We multiply parentheses ..
(+2X^2-6X+6X-18)-180=0
We get rid of parentheses
2X^2-6X+6X-18-180=0
We add all the numbers together, and all the variables
2X^2-198=0
a = 2; b = 0; c = -198;
Δ = b2-4ac
Δ = 02-4·2·(-198)
Δ = 1584
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1584}=\sqrt{144*11}=\sqrt{144}*\sqrt{11}=12\sqrt{11}$
$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-12\sqrt{11}}{2*2}=\frac{0-12\sqrt{11}}{4} =-\frac{12\sqrt{11}}{4} =-3\sqrt{11} $
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+12\sqrt{11}}{2*2}=\frac{0+12\sqrt{11}}{4} =\frac{12\sqrt{11}}{4} =3\sqrt{11} $

See similar equations:

| 6b/3+6=24 | | 2+3(x−4)=4x+10 | | 5x+16+6=7x-4 | | 12÷-10=x | | -294=-7n | | 2.5+4x=12.5 | | y+65=155 | | 8x+3x-12=11x+16 | | 1/2(4b+6)=15+2b | | -3(n+1)=-6n+21 | | 3p-2=-11 | | 7p+-12p=-15 | | 3/4=q/10 | | 20=n+13 | | h/3+15=19 | | 5=15.25x=33.55 | | 2(y+2)=5-y | | 8x8=23 | | 47q-5=68q-89 | | 5w=1w+12 | | -11+p=-14 | | -6+5(1+3s)=-34 | | 2(u-8)+8=10 | | 20=n+30 | | b=6+1/3 | | 54=x-46 | | Y=20x-5 | | 27x-3x+18=6 | | 15+b+13=3b+10 | | 50x+25=375 | | 360=45y | | 5(3x-12)=150 |

Equations solver categories