(X+3)(x-8)+x=55

Simple and best practice solution for (X+3)(x-8)+x=55 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (X+3)(x-8)+x=55 equation:



(X+3)(X-8)+X=55
We move all terms to the left:
(X+3)(X-8)+X-(55)=0
We add all the numbers together, and all the variables
X+(X+3)(X-8)-55=0
We multiply parentheses ..
(+X^2-8X+3X-24)+X-55=0
We get rid of parentheses
X^2-8X+3X+X-24-55=0
We add all the numbers together, and all the variables
X^2-4X-79=0
a = 1; b = -4; c = -79;
Δ = b2-4ac
Δ = -42-4·1·(-79)
Δ = 332
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{332}=\sqrt{4*83}=\sqrt{4}*\sqrt{83}=2\sqrt{83}$
$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-2\sqrt{83}}{2*1}=\frac{4-2\sqrt{83}}{2} $
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+2\sqrt{83}}{2*1}=\frac{4+2\sqrt{83}}{2} $

See similar equations:

| 12−1.5r=2r+1 | | 288=-y+141 | | 6+10-10=x+8-10 | | 6x^2+5x^2=0 | | 5/6=5/a | | 2y-12/4=-25’ | | d-5.1=2d-6.1 | | 10=7-2m/3 | | g-6=2g | | -12-2x=-2x | | 2x+4x^2+6=0 | | 12(x-3)+2x-2(7x+3)=0 | | 3a+8/2=-14 | | 7r=-12+6r | | 10x+20=15x+5 | | 4y+-2y=36 | | |4x-2|+6=8 | | -15p+6=-14p | | 10x+20=15+x+5 | | 9x=0.5(12x-2) | | 8(x-10=4(x+3) | | .25=-900+x | | -5=x-9/10 | | 2x^2-3x+2=(x-4)(x-2)+2x | | 4^x-3*2^x+2=0 | | 40=0.95x | | 3/7w-11=(-4/7w) | | 5/7z-1/4=-2/7z-1/2 | | 110x+20=15x+5 | | 29.99x+0.15x=34 | | 8r-r/6=1/6-8r | | 9(4+3x)=72 |

Equations solver categories