(X+4)(x-5)+x=180

Simple and best practice solution for (X+4)(x-5)+x=180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (X+4)(x-5)+x=180 equation:



(X+4)(X-5)+X=180
We move all terms to the left:
(X+4)(X-5)+X-(180)=0
We add all the numbers together, and all the variables
X+(X+4)(X-5)-180=0
We multiply parentheses ..
(+X^2-5X+4X-20)+X-180=0
We get rid of parentheses
X^2-5X+4X+X-20-180=0
We add all the numbers together, and all the variables
X^2-200=0
a = 1; b = 0; c = -200;
Δ = b2-4ac
Δ = 02-4·1·(-200)
Δ = 800
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{800}=\sqrt{400*2}=\sqrt{400}*\sqrt{2}=20\sqrt{2}$
$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-20\sqrt{2}}{2*1}=\frac{0-20\sqrt{2}}{2} =-\frac{20\sqrt{2}}{2} =-10\sqrt{2} $
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+20\sqrt{2}}{2*1}=\frac{0+20\sqrt{2}}{2} =\frac{20\sqrt{2}}{2} =10\sqrt{2} $

See similar equations:

| 12x-8=12+2 | | 160=10(x-60)+60 | | 16(4-3m)=96(-(m/2)+1) | | x3-3x2-5x+15=0 | | 35-(2c+4)=29(c+3)+c | | 3/8x-1/9=1/2 | | 11x/24-7=x/6+21 | | 35-(2c+4)=29(c+3) | | 1/2(x+6)-3=-2/3(x-6) | | X+21x=-7 | | 1/2x(7+3)=60 | | x4+9x+81=0 | | -24=36w=48 | | x3-x2-6=0 | | (x-1)(5x=4) | | .14x+.17x=13 | | -37(y-69)=-99-y | | m/2+3/2=m+3/4 | | (9-w)(5w+8)=0 | | 12x2+15x=-7 | | 3(x-8)+7=5(x+2)-3x-4 | | x+85=685 | | x2-20x+100=0 | | 7x/16-5=x/4+4 | | x^2-x-1050=0 | | (x-11)(x-8)=70 | | 100/b=0.012 | | 2x2-5x-7=0 | | x^2=5x-14=-18 | | 7+1+5n-3=4n-3 | | 5^(z-1)/3=25^1/z | | (b+4)/3=(b-8)/5 |

Equations solver categories