(X+5)(3x-1)+(x+5)(2x+1)=0

Simple and best practice solution for (X+5)(3x-1)+(x+5)(2x+1)=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (X+5)(3x-1)+(x+5)(2x+1)=0 equation:



(X+5)(3X-1)+(X+5)(2X+1)=0
We multiply parentheses ..
(+3X^2-1X+15X-5)+(X+5)(2X+1)=0
We get rid of parentheses
3X^2-1X+15X+(X+5)(2X+1)-5=0
We multiply parentheses ..
3X^2+(+2X^2+X+10X+5)-1X+15X-5=0
We add all the numbers together, and all the variables
3X^2+(+2X^2+X+10X+5)+14X-5=0
We get rid of parentheses
3X^2+2X^2+X+10X+14X+5-5=0
We add all the numbers together, and all the variables
5X^2+25X=0
a = 5; b = 25; c = 0;
Δ = b2-4ac
Δ = 252-4·5·0
Δ = 625
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{625}=25$
$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(25)-25}{2*5}=\frac{-50}{10} =-5 $
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(25)+25}{2*5}=\frac{0}{10} =0 $

See similar equations:

| r+10/4=0 | | 3x-5+90+2x+15=180 | | x=12x+981 | | (7x+1)^2-19=0 | | X2+102x-7200=0 | | 19=3+x^2 | | (7x+1)^2=19 | | 2x=20−3x | | 37-(14-x)=1-(x+3) | | -(5+6c)+15=-90 | | 16-(x-8)=23 | | 12/12x=1/4 | | 11b=4b-98 | | 8(x-1)=4(x-1) | | 30-5t=5t | | (5w/7)=10 | | (5/7u)=35 | | 3. 39c-78=33c | | 9=(3/8w) | | 9=(3/8)w | | 7x-5(2x-4)=x+3 | | 12x+7=10x+3 | | (1)/(6)(y+42)-15=-3 | | -x^2-8x+33=0 | | (3x+6)(x+3)+(x+2)=0 | | k^2=4k+32 | | 4x+2/2+x-22/3=1 | | -4-2x=30 | | d2+9d+18=0 | | 0.1x^2-0.8x+1.2=0 | | 2x+3-4x+7=18+2x | | Y=-x^2/10+2x+2 |

Equations solver categories