If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(X+8)X=180
We move all terms to the left:
(X+8)X-(180)=0
We multiply parentheses
X^2+8X-180=0
a = 1; b = 8; c = -180;
Δ = b2-4ac
Δ = 82-4·1·(-180)
Δ = 784
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{784}=28$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-28}{2*1}=\frac{-36}{2} =-18 $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+28}{2*1}=\frac{20}{2} =10 $
| -9.1=s | | (x-200)÷100=x÷150 | | 8b+2b+b-6b=20 | | (3x-13)=(6x+10) | | 16=x27 | | 8=r÷4 | | 2k+3k+k+k-5k=14 | | O.3(x+5)=5(0.1+0.11x) | | w÷7=6 | | -8x-7=-28 | | 28=x-56 | | C=100r | | p/9+34=90 | | 20r-10r-9r-r+4r=20 | | b(12)=24 | | 50×(m−10)m=12 | | -0.25=0.2b | | 6d+6=10+4d+4d | | P=w+11 | | 8g+12=92 | | x-13.2=51 | | -6+3k=k+6 | | x-200/100=x/150 | | 10+q-2=-10+10q | | 2z-z+5z+2z=8 | | 5+10h=-7+4h | | P=-2h+39 | | x+6.5=8.31 | | 2.7b+4.05=9.69+3.3b | | (-1*p+8)=10 | | -2z+10-10=-7-z | | 86.32×j.20=$103.58 |