(X-2)(4x-4)=(x+1)(2x+1)

Simple and best practice solution for (X-2)(4x-4)=(x+1)(2x+1) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (X-2)(4x-4)=(x+1)(2x+1) equation:



(X-2)(4X-4)=(X+1)(2X+1)
We move all terms to the left:
(X-2)(4X-4)-((X+1)(2X+1))=0
We multiply parentheses ..
(+4X^2-4X-8X+8)-((X+1)(2X+1))=0
We calculate terms in parentheses: -((X+1)(2X+1)), so:
(X+1)(2X+1)
We multiply parentheses ..
(+2X^2+X+2X+1)
We get rid of parentheses
2X^2+X+2X+1
We add all the numbers together, and all the variables
2X^2+3X+1
Back to the equation:
-(2X^2+3X+1)
We get rid of parentheses
4X^2-2X^2-4X-8X-3X+8-1=0
We add all the numbers together, and all the variables
2X^2-15X+7=0
a = 2; b = -15; c = +7;
Δ = b2-4ac
Δ = -152-4·2·7
Δ = 169
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{169}=13$
$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-15)-13}{2*2}=\frac{2}{4} =1/2 $
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-15)+13}{2*2}=\frac{28}{4} =7 $

See similar equations:

| 9w=8w=7 | | 7m=8m+10 | | 18x-x5x=10x+2x-10 | | 2z+12=3z | | 120/30=x/500 | | 3y+42=6y | | 5x+9=6x-24 | | x=5-7-3-2=-12 | | 11-3x=45 | | y=5-7-3-2=-12 | | 1.5r=30 | | 15+n6=9 | | 7x+11=-5x-35 | | 7=3v−2 | | 20-4k=12 | | 6-8x=6(1+6x) | | 20−4k=12 | | X+4=y+9 | | 4.12s=10.04 | | 2(3x+2)-11x=-5x | | –9=3m+6m | | z^2+16z-44=0 | | -7=1x-2 | | 6x-2=-2x | | 12−6(w−3)=3 | | 19=-9u-5=6u | | x–16=14 | | 4x-2=6-3x-9 | | 16x-80x=37+27 | | 25=3-4n | | 9w3=5w+7 | | 42=6c |

Equations solver categories