(X-2)(x-2)=3(2x-3)(2-x)

Simple and best practice solution for (X-2)(x-2)=3(2x-3)(2-x) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (X-2)(x-2)=3(2x-3)(2-x) equation:



(X-2)(X-2)=3(2X-3)(2-X)
We move all terms to the left:
(X-2)(X-2)-(3(2X-3)(2-X))=0
We add all the numbers together, and all the variables
(X-2)(X-2)-(3(2X-3)(-1X+2))=0
We multiply parentheses ..
(+X^2-2X-2X+4)-(3(2X-3)(-1X+2))=0
We calculate terms in parentheses: -(3(2X-3)(-1X+2)), so:
3(2X-3)(-1X+2)
We multiply parentheses ..
3(-2X^2+4X+3X-6)
We multiply parentheses
-6X^2+12X+9X-18
We add all the numbers together, and all the variables
-6X^2+21X-18
Back to the equation:
-(-6X^2+21X-18)
We get rid of parentheses
X^2+6X^2-2X-2X-21X+4+18=0
We add all the numbers together, and all the variables
7X^2-25X+22=0
a = 7; b = -25; c = +22;
Δ = b2-4ac
Δ = -252-4·7·22
Δ = 9
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{9}=3$
$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-25)-3}{2*7}=\frac{22}{14} =1+4/7 $
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-25)+3}{2*7}=\frac{28}{14} =2 $

See similar equations:

| 7x-17=28-2x | | (2x-1)(x+1)=4(1+x)(1-x)-6x | | 5x=30*5 | | 2/x(x)+3x-2=1 | | 5*5x=80 | | 8/x-5=x+2 | | 5x=80/5 | | 5x=80-5 | | 3z/10-9=5 | | 5x/5=80 | | 5x*5=80 | | 3x+1.257=40 | | 8x-23=3x+27 | | (2x+3)(2x+3)=5(2x+3) | | K-3=3k-5 | | (X-3)(x-3)=7(x-3) | | X(x)-x+0.25=0 | | 3^2x+3^(X+1)=810 | | 5-3x(x)=x(3x-13) | | x*8/15=1 | | X(5-x)=-36 | | 10x+30=x+12 | | (X)(x)+0.5x=3 | | (2x-1)(x+3)-15=0 | | (X-4)(x-4)=4x-11 | | (X-1)(x-1)-(x-1)=0 | | x^4+2x^3+2x+1=0 | | 2xxx=128 | | (X-3)(x-3)=3x-11 | | 2x*7=3x*9 | | 10x+30=5x+3 | | (4x+5)*3=51 |

Equations solver categories