If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(X-2)(X+2)=360
We move all terms to the left:
(X-2)(X+2)-(360)=0
We use the square of the difference formula
X^2-4-360=0
We add all the numbers together, and all the variables
X^2-364=0
a = 1; b = 0; c = -364;
Δ = b2-4ac
Δ = 02-4·1·(-364)
Δ = 1456
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1456}=\sqrt{16*91}=\sqrt{16}*\sqrt{91}=4\sqrt{91}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{91}}{2*1}=\frac{0-4\sqrt{91}}{2} =-\frac{4\sqrt{91}}{2} =-2\sqrt{91} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{91}}{2*1}=\frac{0+4\sqrt{91}}{2} =\frac{4\sqrt{91}}{2} =2\sqrt{91} $
| 5(2y-5)-3(2y+3)=2(y-26) | | (Z+12)/4=(z/16) | | a/3-3/a=9a+5/27 | | -22=5v-7 | | 9v-18=-18 | | r^2+10r+21=-3 | | -(x-4)=-3x-2 | | 8(2x-4)-16=48 | | r^2=10r+21=-3 | | 2x-66=0 | | 3x^2+11=5x | | -9a=-42 | | 4(2y-3)+5(y-5)=6(y+12) | | (-11/6)+m=-(2/9) | | 10m+6=6m+8 | | 5y/12-1=8-4y/3 | | 1-x=1-4x | | 5/13=j-6/13 | | 0=-4.9t^2+150t+350 | | 12/43x=180 | | 11y/20-4=6-5y/4 | | 17v−16v=14 | | 2(2x+3)=6(x+9 | | 7(3x-5)-6(2x-4)=4x+34 | | 12/43x=189 | | 5x+4=1+2x | | 2.3y+8-3y-10=0 | | 3.4y+(-5.2)=3y+2 | | 5(k-2)-8=4k-(3k-2) | | 12x-19=9x+5 | | 135=t−136 | | -7/6=15/6+d |