(X-26)+(2x-80)+(1/2x+13)=180

Simple and best practice solution for (X-26)+(2x-80)+(1/2x+13)=180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (X-26)+(2x-80)+(1/2x+13)=180 equation:



(X-26)+(2X-80)+(1/2X+13)=180
We move all terms to the left:
(X-26)+(2X-80)+(1/2X+13)-(180)=0
Domain of the equation: 2X+13)!=0
X∈R
We get rid of parentheses
X+2X+1/2X-26-80+13-180=0
We multiply all the terms by the denominator
X*2X+2X*2X-26*2X-80*2X+13*2X-180*2X+1=0
Wy multiply elements
2X^2+4X^2-52X-160X+26X-360X+1=0
We add all the numbers together, and all the variables
6X^2-546X+1=0
a = 6; b = -546; c = +1;
Δ = b2-4ac
Δ = -5462-4·6·1
Δ = 298092
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{298092}=\sqrt{4*74523}=\sqrt{4}*\sqrt{74523}=2\sqrt{74523}$
$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-546)-2\sqrt{74523}}{2*6}=\frac{546-2\sqrt{74523}}{12} $
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-546)+2\sqrt{74523}}{2*6}=\frac{546+2\sqrt{74523}}{12} $

See similar equations:

| 6(3x-6)-4x+8=14 | | 42=54-2w | | 7p+2=6(p-5) | | 5x/5=27/5 | | −10x+5=−6x−35 | | 1/2(8x+24)-x=3x-2x | | 10^-0.475=x/0.0635-x | | 8w=52+24 | | 8=3x+35 | | –6(q+12)=12 | | 6j+9=11 | | 4w−1=11 | | v/4+4=13 | | 14x-6+18x=21+27x | | 3c+16=19 | | -30=-5(-9+n) | | 10a+24=8a+15 | | 8+9x-3x^2=0 | | 1x-3=2x-9 | | 13x-42=7x+30 | | 6q+1=-2 | | 3x+7=8x–33 | | r/11+13=17 | | r11+13=17 | | 9x+12=6x+48 | | 7x*5/4=24 | | 125m-100m+43650=46125-200m | | 6(2x+5)=58 | | 3x+15-48=8x-48+120 | | 6(n–8)=4(12–5n)+14n. | | 2-3D=4d-26 | | 4=12k+6 |

Equations solver categories