If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(X-3)(X.X-2X+6)=X(X.X-5X+9)
We move all terms to the left:
(X-3)(X.X-2X+6)-(X(X.X-5X+9))=0
We add all the numbers together, and all the variables
(X-3)(-2X+X.X+6)-(X(-5X+X.X+9))=0
We multiply parentheses ..
(-2X^2+X^2+6X+6X-3X-18)-(X(-5X+X.X+9))=0
We calculate terms in parentheses: -(X(-5X+X.X+9)), so:We get rid of parentheses
X(-5X+X.X+9)
We multiply parentheses
-5X^2+X^2+9X
We add all the numbers together, and all the variables
-4X^2+9X
Back to the equation:
-(-4X^2+9X)
-2X^2+X^2+4X^2+6X+6X-3X-9X-18=0
We add all the numbers together, and all the variables
3X^2-18=0
a = 3; b = 0; c = -18;
Δ = b2-4ac
Δ = 02-4·3·(-18)
Δ = 216
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{216}=\sqrt{36*6}=\sqrt{36}*\sqrt{6}=6\sqrt{6}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{6}}{2*3}=\frac{0-6\sqrt{6}}{6} =-\frac{6\sqrt{6}}{6} =-\sqrt{6} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{6}}{2*3}=\frac{0+6\sqrt{6}}{6} =\frac{6\sqrt{6}}{6} =\sqrt{6} $
| 8p+3=-8(-2p+5)-7(-9+P) | | 4y3=52y | | 8(x-5)=(-16) | | 14-2c;c=2 | | 4x+1=7x011 | | 6(n1)=2(n+1) | | -315=105+x | | -8(-5x+5)=5(7x+2) | | 9x-8+80-9x=88 | | 6(k+1)=2k+714 | | -2+3/4x=-5 | | 6x+13=77 | | -4(x-1)=x-11 | | 2(16+x)=x+21 | | z/5+3=z/3+7 | | 4=11=8r=29 | | 4x-3=3+6x | | (x-1)2=4x+14 | | 6(2x-3)=2(2x+1) | | 4x–3=3+6x | | 2(x+17)=x+26 | | 10+x/3=13 | | -12=4(x+6) | | 10(c+3)=40 | | 2x-8=4(3x-1) | | 3x+9+4x+x=3x+9+4x+x=8x+9 | | -2-5h=14 | | 3x+45=24 | | -5/6(m-4)=-2 | | 7(x+6)=-8x+12 | | 2=(-x)+12 | | 10x-9=5x+11 |