(X-3)(x+3)+80=180

Simple and best practice solution for (X-3)(x+3)+80=180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (X-3)(x+3)+80=180 equation:



(X-3)(X+3)+80=180
We move all terms to the left:
(X-3)(X+3)+80-(180)=0
We add all the numbers together, and all the variables
(X-3)(X+3)-100=0
We use the square of the difference formula
X^2-9-100=0
We add all the numbers together, and all the variables
X^2-109=0
a = 1; b = 0; c = -109;
Δ = b2-4ac
Δ = 02-4·1·(-109)
Δ = 436
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{436}=\sqrt{4*109}=\sqrt{4}*\sqrt{109}=2\sqrt{109}$
$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{109}}{2*1}=\frac{0-2\sqrt{109}}{2} =-\frac{2\sqrt{109}}{2} =-\sqrt{109} $
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{109}}{2*1}=\frac{0+2\sqrt{109}}{2} =\frac{2\sqrt{109}}{2} =\sqrt{109} $

See similar equations:

| -6x+36=-6(x-6) | | 5(75)+10x=1155 | | 15/75=x/225 | | 18+4p-16=2(6p+13) | | 3x=4(x-$2.25) | | 11-9p=146 | | 4(1+3m)-4=8(1-m) | | -24/5=÷1/2n | | 10c+20+20=13c-20 | | 14=4b+2-2b | | -4(6-y)=-4 | | -3(x+1)+7x=4(x-1)-5 | | 1.1+x=4.7 | | 127=3x+4(-3x+16) | | x6x9x=420 | | 6-3+4x+1=1x+2 | | 8(7-2a)=-8(a-1) | | 3x-3x=3x+12-3x | | 6-17f-2f=14-20f | | 3b/6+8=42 | | 78/x=12/24 | | -4(8-3r)=2(-4+4r)-4 | | 15y-30+4=-11 | | -z-13=7z+17+4z | | 6m-4=-2(5-3m) | | -6x+7(1-x)=−4(x-4) | | 3/10s=61/5 | | 2(x-3)=x+3x | | 9+9u=9(u-1) | | 2(a-8)+7=5(a+20-3a-19 | | 78/x=24/12 | | 31-2x=11+8x |

Equations solver categories