(X-3)(x+4)=18+x

Simple and best practice solution for (X-3)(x+4)=18+x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (X-3)(x+4)=18+x equation:



(X-3)(X+4)=18+X
We move all terms to the left:
(X-3)(X+4)-(18+X)=0
We add all the numbers together, and all the variables
(X-3)(X+4)-(X+18)=0
We get rid of parentheses
(X-3)(X+4)-X-18=0
We multiply parentheses ..
(+X^2+4X-3X-12)-X-18=0
We add all the numbers together, and all the variables
(+X^2+4X-3X-12)-1X-18=0
We get rid of parentheses
X^2+4X-3X-1X-12-18=0
We add all the numbers together, and all the variables
X^2-30=0
a = 1; b = 0; c = -30;
Δ = b2-4ac
Δ = 02-4·1·(-30)
Δ = 120
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{120}=\sqrt{4*30}=\sqrt{4}*\sqrt{30}=2\sqrt{30}$
$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{30}}{2*1}=\frac{0-2\sqrt{30}}{2} =-\frac{2\sqrt{30}}{2} =-\sqrt{30} $
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{30}}{2*1}=\frac{0+2\sqrt{30}}{2} =\frac{2\sqrt{30}}{2} =\sqrt{30} $

See similar equations:

| 2x-3=2(x+4)/2 | | 8y-30-2=8(y-5) | | 13(z-3)-3(z-1)=5(z-3)+4(z-3) | | -1-2w=-2w+10 | | -7n+5n=-2n | | Y=16x^2+64x+80 | | 9p+8=9p-6 | | 20w+25^3=0 | | 8x-2+5x+1=180 | | +7p-5p-8p=-6 | | -4b-9=-9-4b | | 7x+3=180-2x+15 | | -1×-t=1 | | -6y=-6y-8 | | -3c=3c-6 | | 4-6a=-8 | | -7t+6=6-7t | | 7n−n=12 | | -6-g=-g | | .73=-6(k-7)+6(k+5) | | 7x+2=4-6x | | 20=12x-64 | | -9z=1-9z | | 18.50+0.15x=18+0.25x | | 158-u=×36 | | 36^(2x)=216^(x-3) | | 59=3x-20 | | 3t-(2-t)=38 | | 5^9x5^3=0 | | 3x-49=2x | | y+9=16.3 | | X-12=-2x+40 |

Equations solver categories