(X-30)+(1/2x+15)+(2x-120)=180

Simple and best practice solution for (X-30)+(1/2x+15)+(2x-120)=180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (X-30)+(1/2x+15)+(2x-120)=180 equation:



(X-30)+(1/2X+15)+(2X-120)=180
We move all terms to the left:
(X-30)+(1/2X+15)+(2X-120)-(180)=0
Domain of the equation: 2X+15)!=0
X∈R
We get rid of parentheses
X+1/2X+2X-30+15-120-180=0
We multiply all the terms by the denominator
X*2X+2X*2X-30*2X+15*2X-120*2X-180*2X+1=0
Wy multiply elements
2X^2+4X^2-60X+30X-240X-360X+1=0
We add all the numbers together, and all the variables
6X^2-630X+1=0
a = 6; b = -630; c = +1;
Δ = b2-4ac
Δ = -6302-4·6·1
Δ = 396876
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{396876}=\sqrt{4*99219}=\sqrt{4}*\sqrt{99219}=2\sqrt{99219}$
$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-630)-2\sqrt{99219}}{2*6}=\frac{630-2\sqrt{99219}}{12} $
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-630)+2\sqrt{99219}}{2*6}=\frac{630+2\sqrt{99219}}{12} $

See similar equations:

| 5^{2x}+1=4^{5x} | | 11+5m=98.6 | | X+x2=122-x3 | | 7+2t-2=7t+9-4t | | 25=5(4x-3) | | 6x7=6x(5+ | | 3(4x-4)=36 | | 4x+10=-2x=70 | | 2x+5=10+10x | | (12/(x+5))-(24/(x^2-25))=4 | | -2(x=4)-3x+8) | | 4c+8=7,2+5c | | -30=12=7x | | -7v+7-v=14-8v | | -2+13=17x-5-16x | | -9y-8=2y+25 | | 3^(2x/1)=2^(x-4) | | 5(x+8)+7=8x-3(x-5) | | 2n+n=-7n | | 5(r+4)=-12+7r | | 22.00x+1.50=11.00x+2.75 | | q+18=41 | | 2e=3 | | x+2/3=8/3 | | 17x-2=4x+14 | | 22.00+1.50x=11.00+2.75x | | 16-6a=5a+5 | | 5.9+x=8.2 | | 2/2x-8=7/5 | | 3.3x=2.3x+7.0 | | 35=11-8a | | 6+19x=120 |

Equations solver categories