(X-5)(40-x)=4(x-5))

Simple and best practice solution for (X-5)(40-x)=4(x-5)) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (X-5)(40-x)=4(x-5)) equation:



(X-5)(40-X)=4(X-5))
We move all terms to the left:
(X-5)(40-X)-(4(X-5)))=0
We add all the numbers together, and all the variables
(X-5)(-1X+40)-(4(X-5)))=0
We multiply parentheses ..
(-1X^2+40X+5X-200)-(4(X-5)))=0
We calculate terms in parentheses: -(4(X-5))), so:
4(X-5))
We multiply parentheses
4X+
We add all the numbers together, and all the variables
4X
Back to the equation:
-(4X)
We get rid of parentheses
-1X^2+40X+5X-4X-200=0
We add all the numbers together, and all the variables
-1X^2+41X-200=0
a = -1; b = 41; c = -200;
Δ = b2-4ac
Δ = 412-4·(-1)·(-200)
Δ = 881
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(41)-\sqrt{881}}{2*-1}=\frac{-41-\sqrt{881}}{-2} $
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(41)+\sqrt{881}}{2*-1}=\frac{-41+\sqrt{881}}{-2} $

See similar equations:

| (X-5)(40-x)=4(x-) | | (4x+3/2x+5)=1 | | -88=8(1-5n) | | 2(4u-10)=60 | | 5x+35=-17x | | 1/7u-4=8 | | q/4+4=3 | | 2a5=19 | | -1(x)=9-6x | | 48/1=300/a | | 1/4g+6=10 | | f-1)=9-6(-1) | | 3x/15=3/15 | | 2^x+2^3-^x=9 | | 0=4+p/3 | | 9n+5(5n-8)=13 | | 4x+2=7x-14 | | 3x+0.3=10 | | 7n^2=21 | | X/3-2/5=2x/15-3/5 | | 2(10-3c)=c+4 | | 5x-7÷2x+3=2 | | X=4/5x+1 | | 10(3m-4)=30-5m | | 3(2x-1)+2x(2x-1)=11 | | y+24=24 | | 5(2x+4)-2x=20 | | x2+3x-34=0 | | x+10+4x+25+x+5=180 | | 3p–8=19 | | 2x-16=-76 | | -6(3m-3)=-90 |

Equations solver categories