(X-5)2+y2=225

Simple and best practice solution for (X-5)2+y2=225 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (X-5)2+y2=225 equation:



(X-5)2+X2=225
We move all terms to the left:
(X-5)2+X2-(225)=0
We add all the numbers together, and all the variables
X^2+(X-5)2-225=0
We multiply parentheses
X^2+2X-10-225=0
We add all the numbers together, and all the variables
X^2+2X-235=0
a = 1; b = 2; c = -235;
Δ = b2-4ac
Δ = 22-4·1·(-235)
Δ = 944
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{944}=\sqrt{16*59}=\sqrt{16}*\sqrt{59}=4\sqrt{59}$
$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-4\sqrt{59}}{2*1}=\frac{-2-4\sqrt{59}}{2} $
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+4\sqrt{59}}{2*1}=\frac{-2+4\sqrt{59}}{2} $

See similar equations:

| -8=4m+ | | 11x-19=13x+3 | | 15x-19+13x+3=1803 | | 0.4g=-10 | | 8/11(n−10)=16 | | 811(n−10)=16 | | 9(y-2)=45 | | 16+47x=8 | | -2x+10+7x=(x+2) | | 1+39=-4(9x-10) | | -3=k/2;k=-1 | | 2x=105+41 | | 16/2=x/14 | | -6.26-4r=9.24+r | | 78+16m=318 | | 16/2=14/x | | –6.26-4r=9.24r | | 4x+45+5x=180 | | 8.65-0.5c+6.86=-4.5c-8.49 | | 16/2=x/3 | | 5k^2-20k+15=0 | | -7=-8+p/6 | | 4f+4=-2+5f | | 16x+44+x+85=180 | | 4f+4=–2+5f | | X=0.6x+660 | | x+52+x+44=180 | | 5^4x-2=125 | | 11x+x+96=180 | | 8-p=-8+6p-5p | | 3x-7=5x19 | | 5x÷(-55)=20 |

Equations solver categories