If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(X-5)X=126
We move all terms to the left:
(X-5)X-(126)=0
We multiply parentheses
X^2-5X-126=0
a = 1; b = -5; c = -126;
Δ = b2-4ac
Δ = -52-4·1·(-126)
Δ = 529
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{529}=23$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-5)-23}{2*1}=\frac{-18}{2} =-9 $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-5)+23}{2*1}=\frac{28}{2} =14 $
| 3(2f-9)=39 | | 2.3t+4.9t^2=41 | | 17(2-x)÷(1-7x)+5(x+12)÷(7x-1)=8 | | 10=5(9j-7) | | 1/3(y+7)=3(y−1) | | 3(-3l+1)=5(-2l-2) | | 30=6(5j-10) | | 9x9=3x | | 44=4(3h+8) | | 2^3n4^n+7/2^n-6=16 | | 56+3x-8=5x+6 | | 3(o+2)=2(3o-6 | | 2y+4/y=9 | | (3^x)^4=81 | | 3v-18-1=-2(-8v+8)-7v | | y/6+3=11 | | 2(5+l)=12 | | (2x+7)/3=(x+4)/2 | | 10^2x-1=1000 | | 2(5+l=12 | | 2y+6=8y-14 | | -9+8n=7+4n | | 2^4x=1/128 | | 8x-1.2=-9x-14.9 | | 8^x-5=1 | | 5^x=5✓625 | | 5+3t=5t-19 | | 3^3x+4=27 | | -3r+10=15r+-8 | | 3x+2.8=-6x | | 5^2x-1=1/125 | | 8^2x=64 |