(X-9)(x-9)=4(x-2)

Simple and best practice solution for (X-9)(x-9)=4(x-2) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (X-9)(x-9)=4(x-2) equation:



(X-9)(X-9)=4(X-2)
We move all terms to the left:
(X-9)(X-9)-(4(X-2))=0
We multiply parentheses ..
(+X^2-9X-9X+81)-(4(X-2))=0
We calculate terms in parentheses: -(4(X-2)), so:
4(X-2)
We multiply parentheses
4X-8
Back to the equation:
-(4X-8)
We get rid of parentheses
X^2-9X-9X-4X+81+8=0
We add all the numbers together, and all the variables
X^2-22X+89=0
a = 1; b = -22; c = +89;
Δ = b2-4ac
Δ = -222-4·1·89
Δ = 128
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{128}=\sqrt{64*2}=\sqrt{64}*\sqrt{2}=8\sqrt{2}$
$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-22)-8\sqrt{2}}{2*1}=\frac{22-8\sqrt{2}}{2} $
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-22)+8\sqrt{2}}{2*1}=\frac{22+8\sqrt{2}}{2} $

See similar equations:

| 9/25=x/5 | | x-17=46 | | -2x+5+2x=-1+(-1)+6x+2 | | 4x=1/4x+70 | | x-2=4.2 | | -5d-5=-25 | | 7p+157=180 | | -2(4s-3)-6=3(7s+6)-5 | | h=-16(2)^2+10(2)+16 | | 2x+10=12x-3 | | h/4-1=1 | | 13-(s-5)-4(s-1)+s=5 | | 19+19z=-19 | | (U-7)^2=2u^2-10u+37 | | 9x+7-10x+2=8x-9x-3 | | 1.3x-4=9 | | 4(x-4)-3(x+1)-14=-25 | | 19×19z=-19 | | x+2x+2x+20+3x+20=360 | | 2x+135°+x=180 | | v-3/4=-1/3 | | 15+2a=7 | | 1.8(2x+3)=3.5(x+2 | | 5(2x+1)+5=3x+1+4 | | (9b+b)(4b-5)=0 | | -5/9=y+4 | | 7(3x-2)+4(10-3x)=4(2x+3)-10 | | 3+2r=-5 | | 5x-3(x-4)+2x(x-5)=30 | | r^2-14r-169=0 | | 10^x=289 | | 21/2x-1/4=73/4 |

Equations solver categories