(X2+2)+y2=16

Simple and best practice solution for (X2+2)+y2=16 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (X2+2)+y2=16 equation:



(X2+2)+X2=16
We move all terms to the left:
(X2+2)+X2-(16)=0
We add all the numbers together, and all the variables
(+X^2+2)+X2-16=0
We add all the numbers together, and all the variables
X^2+(+X^2+2)-16=0
We get rid of parentheses
X^2+X^2+2-16=0
We add all the numbers together, and all the variables
2X^2-14=0
a = 2; b = 0; c = -14;
Δ = b2-4ac
Δ = 02-4·2·(-14)
Δ = 112
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{112}=\sqrt{16*7}=\sqrt{16}*\sqrt{7}=4\sqrt{7}$
$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{7}}{2*2}=\frac{0-4\sqrt{7}}{4} =-\frac{4\sqrt{7}}{4} =-\sqrt{7} $
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{7}}{2*2}=\frac{0+4\sqrt{7}}{4} =\frac{4\sqrt{7}}{4} =\sqrt{7} $

See similar equations:

| 8+9x-3=21 | | 1/2v=11/15 | | 80=4x+54 | | 4.3=29.9-2w | | 5^2x=105 | | (30+2x)(12+2x)=1008 | | s+216=265 | | 275=11g | | .2(3x–5)=8 | | 4^x=58 | | 9=w÷5 | | 6x−5=85 | | -4/3+1/2v=-3/5 | | 15x+8x=23 | | -1.5x+4=-2 | | 3.2(x+3)=2(1.6x+3)+3.6 | | -20.51+29.79=x | | 29.6h=464.7 | | 6x–3.5+7x=35.5 | | 3(x+7=)=-12 | | 122=66(x+7) | | 9+b=20 | | 77r=75 | | -3x+2+6x=512.)x-4+7x=36 | | −4/7(x−1/4)=3/7 | | n/2-10=4 | | 4.8x-13.4=25 | | -16=2x+3x-110.)103=6x+3x+4 | | x+4.9=6.18 | | 9q+2q+q+q-12q=14 | | (2x^2-1)^9=0 | | 2n-9=-20 |

Equations solver categories